- Fixes an inconsistency in the implementation of Discrete CRR. Now it uses `Critic` class for its critic, following conventions in other actor-critic policies; - Updates several offline policies to use `ActorCritic` class for its optimizer to eliminate randomness caused by parameter sharing between actor and critic; - Add `writer.flush()` in TensorboardLogger to ensure real-time result; - Enable `test_collector=None` in 3 trainers to turn off testing during training; - Updates the Atari offline results in README.md; - Moves Atari offline RL examples to `examples/offline`; tests to `test/offline` per review comments.
161 lines
5.7 KiB
Python
161 lines
5.7 KiB
Python
import argparse
|
|
import os
|
|
import pickle
|
|
|
|
import gym
|
|
import numpy as np
|
|
import torch
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
|
|
from tianshou.data import Collector, PrioritizedVectorReplayBuffer, VectorReplayBuffer
|
|
from tianshou.env import DummyVectorEnv
|
|
from tianshou.policy import QRDQNPolicy
|
|
from tianshou.trainer import offpolicy_trainer
|
|
from tianshou.utils import TensorboardLogger
|
|
from tianshou.utils.net.common import Net
|
|
|
|
|
|
def get_args():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('--task', type=str, default='CartPole-v0')
|
|
parser.add_argument('--seed', type=int, default=1)
|
|
parser.add_argument('--eps-test', type=float, default=0.05)
|
|
parser.add_argument('--eps-train', type=float, default=0.1)
|
|
parser.add_argument('--buffer-size', type=int, default=20000)
|
|
parser.add_argument('--lr', type=float, default=1e-3)
|
|
parser.add_argument('--gamma', type=float, default=0.9)
|
|
parser.add_argument('--num-quantiles', type=int, default=200)
|
|
parser.add_argument('--n-step', type=int, default=3)
|
|
parser.add_argument('--target-update-freq', type=int, default=320)
|
|
parser.add_argument('--epoch', type=int, default=10)
|
|
parser.add_argument('--step-per-epoch', type=int, default=10000)
|
|
parser.add_argument('--step-per-collect', type=int, default=10)
|
|
parser.add_argument('--update-per-step', type=float, default=0.1)
|
|
parser.add_argument('--batch-size', type=int, default=64)
|
|
parser.add_argument(
|
|
'--hidden-sizes', type=int, nargs='*', default=[128, 128, 128, 128]
|
|
)
|
|
parser.add_argument('--training-num', type=int, default=10)
|
|
parser.add_argument('--test-num', type=int, default=100)
|
|
parser.add_argument('--logdir', type=str, default='log')
|
|
parser.add_argument('--render', type=float, default=0.)
|
|
parser.add_argument('--prioritized-replay', action="store_true", default=False)
|
|
parser.add_argument('--alpha', type=float, default=0.6)
|
|
parser.add_argument('--beta', type=float, default=0.4)
|
|
parser.add_argument(
|
|
'--save-buffer-name', type=str, default="./expert_QRDQN_CartPole-v0.pkl"
|
|
)
|
|
parser.add_argument(
|
|
'--device', type=str, default='cuda' if torch.cuda.is_available() else 'cpu'
|
|
)
|
|
args = parser.parse_known_args()[0]
|
|
return args
|
|
|
|
|
|
def gather_data():
|
|
args = get_args()
|
|
env = gym.make(args.task)
|
|
if args.task == 'CartPole-v0':
|
|
env.spec.reward_threshold = 190 # lower the goal
|
|
args.state_shape = env.observation_space.shape or env.observation_space.n
|
|
args.action_shape = env.action_space.shape or env.action_space.n
|
|
# train_envs = gym.make(args.task)
|
|
# you can also use tianshou.env.SubprocVectorEnv
|
|
train_envs = DummyVectorEnv(
|
|
[lambda: gym.make(args.task) for _ in range(args.training_num)]
|
|
)
|
|
# test_envs = gym.make(args.task)
|
|
test_envs = DummyVectorEnv(
|
|
[lambda: gym.make(args.task) for _ in range(args.test_num)]
|
|
)
|
|
# seed
|
|
np.random.seed(args.seed)
|
|
torch.manual_seed(args.seed)
|
|
train_envs.seed(args.seed)
|
|
test_envs.seed(args.seed)
|
|
# model
|
|
net = Net(
|
|
args.state_shape,
|
|
args.action_shape,
|
|
hidden_sizes=args.hidden_sizes,
|
|
device=args.device,
|
|
softmax=False,
|
|
num_atoms=args.num_quantiles,
|
|
)
|
|
optim = torch.optim.Adam(net.parameters(), lr=args.lr)
|
|
policy = QRDQNPolicy(
|
|
net,
|
|
optim,
|
|
args.gamma,
|
|
args.num_quantiles,
|
|
args.n_step,
|
|
target_update_freq=args.target_update_freq,
|
|
).to(args.device)
|
|
# buffer
|
|
if args.prioritized_replay:
|
|
buf = PrioritizedVectorReplayBuffer(
|
|
args.buffer_size,
|
|
buffer_num=len(train_envs),
|
|
alpha=args.alpha,
|
|
beta=args.beta,
|
|
)
|
|
else:
|
|
buf = VectorReplayBuffer(args.buffer_size, buffer_num=len(train_envs))
|
|
# collector
|
|
train_collector = Collector(policy, train_envs, buf, exploration_noise=True)
|
|
test_collector = Collector(policy, test_envs, exploration_noise=True)
|
|
# policy.set_eps(1)
|
|
train_collector.collect(n_step=args.batch_size * args.training_num)
|
|
# log
|
|
log_path = os.path.join(args.logdir, args.task, 'qrdqn')
|
|
writer = SummaryWriter(log_path)
|
|
logger = TensorboardLogger(writer)
|
|
|
|
def save_fn(policy):
|
|
torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))
|
|
|
|
def stop_fn(mean_rewards):
|
|
return mean_rewards >= env.spec.reward_threshold
|
|
|
|
def train_fn(epoch, env_step):
|
|
# eps annnealing, just a demo
|
|
if env_step <= 10000:
|
|
policy.set_eps(args.eps_train)
|
|
elif env_step <= 50000:
|
|
eps = args.eps_train - (env_step - 10000) / \
|
|
40000 * (0.9 * args.eps_train)
|
|
policy.set_eps(eps)
|
|
else:
|
|
policy.set_eps(0.1 * args.eps_train)
|
|
|
|
def test_fn(epoch, env_step):
|
|
policy.set_eps(args.eps_test)
|
|
|
|
# trainer
|
|
result = offpolicy_trainer(
|
|
policy,
|
|
train_collector,
|
|
test_collector,
|
|
args.epoch,
|
|
args.step_per_epoch,
|
|
args.step_per_collect,
|
|
args.test_num,
|
|
args.batch_size,
|
|
train_fn=train_fn,
|
|
test_fn=test_fn,
|
|
stop_fn=stop_fn,
|
|
save_fn=save_fn,
|
|
logger=logger,
|
|
update_per_step=args.update_per_step,
|
|
)
|
|
assert stop_fn(result['best_reward'])
|
|
|
|
# save buffer in pickle format, for imitation learning unittest
|
|
buf = VectorReplayBuffer(args.buffer_size, buffer_num=len(test_envs))
|
|
policy.set_eps(0.2)
|
|
collector = Collector(policy, test_envs, buf, exploration_noise=True)
|
|
result = collector.collect(n_step=args.buffer_size)
|
|
pickle.dump(buf, open(args.save_buffer_name, "wb"))
|
|
print(result["rews"].mean())
|
|
return buf
|