Tianshou/examples/atari/README.md
wizardsheng 1eb6137645
Add QR-DQN algorithm (#276)
This is the PR for QR-DQN algorithm: https://arxiv.org/abs/1710.10044

1. add QR-DQN policy in tianshou/policy/modelfree/qrdqn.py.
2. add QR-DQN net in examples/atari/atari_network.py.
3. add QR-DQN atari example in examples/atari/atari_qrdqn.py.
4. add QR-DQN statement in tianshou/policy/init.py.
5. add QR-DQN unit test in test/discrete/test_qrdqn.py.
6. add QR-DQN atari results in examples/atari/results/qrdqn/.
7. add compute_q_value in DQNPolicy and C51Policy for simplify forward function.
8. move `with torch.no_grad():` from `_target_q` to BasePolicy

By running "python3 atari_qrdqn.py --task "PongNoFrameskip-v4" --batch-size 64", get best_result': '19.8 ± 0.40', in epoch 8.
2021-01-28 09:27:05 +08:00

66 lines
6.6 KiB
Markdown

# Atari General
The sample speed is \~3000 env step per second (\~12000 Atari frame per second in fact since we use frame_stack=4) under the normal mode (use a CNN policy and a collector, also storing data into the buffer). The main bottleneck is training the convolutional neural network.
The Atari env seed cannot be fixed due to the discussion [here](https://github.com/openai/gym/issues/1478), but it is not a big issue since on Atari it will always have the similar results.
The env wrapper is a crucial thing. Without wrappers, the agent cannot perform well enough on Atari games. Many existing RL codebases use [OpenAI wrapper](https://github.com/openai/baselines/blob/master/baselines/common/atari_wrappers.py), but it is not the original DeepMind version ([related issue](https://github.com/openai/baselines/issues/240)). Dopamine has a different [wrapper](https://github.com/google/dopamine/blob/master/dopamine/discrete_domains/atari_lib.py) but unfortunately it cannot work very well in our codebase.
# DQN (single run)
One epoch here is equal to 100,000 env step, 100 epochs stand for 10M.
| task | best reward | reward curve | parameters | time cost |
| --------------------------- | ----------- | ------------------------------------- | ------------------------------------------------------------ | ------------------- |
| PongNoFrameskip-v4 | 20 | ![](results/dqn/Pong_rew.png) | `python3 atari_dqn.py --task "PongNoFrameskip-v4" --batch-size 64` | ~30 min (~15 epoch) |
| BreakoutNoFrameskip-v4 | 316 | ![](results/dqn/Breakout_rew.png) | `python3 atari_dqn.py --task "BreakoutNoFrameskip-v4" --test-num 100` | 3~4h (100 epoch) |
| EnduroNoFrameskip-v4 | 670 | ![](results/dqn/Enduro_rew.png) | `python3 atari_dqn.py --task "EnduroNoFrameskip-v4 " --test-num 100` | 3~4h (100 epoch) |
| QbertNoFrameskip-v4 | 7307 | ![](results/dqn/Qbert_rew.png) | `python3 atari_dqn.py --task "QbertNoFrameskip-v4" --test-num 100` | 3~4h (100 epoch) |
| MsPacmanNoFrameskip-v4 | 2107 | ![](results/dqn/MsPacman_rew.png) | `python3 atari_dqn.py --task "MsPacmanNoFrameskip-v4" --test-num 100` | 3~4h (100 epoch) |
| SeaquestNoFrameskip-v4 | 2088 | ![](results/dqn/Seaquest_rew.png) | `python3 atari_dqn.py --task "SeaquestNoFrameskip-v4" --test-num 100` | 3~4h (100 epoch) |
| SpaceInvadersNoFrameskip-v4 | 812.2 | ![](results/dqn/SpaceInvader_rew.png) | `python3 atari_dqn.py --task "SpaceInvadersNoFrameskip-v4" --test-num 100` | 3~4h (100 epoch) |
Note: The `eps_train_final` and `eps_test` in the original DQN paper is 0.1 and 0.01, but [some works](https://github.com/google/dopamine/tree/master/baselines) found that smaller eps helps improve the performance. Also, a large batchsize (say 64 instead of 32) will help faster convergence but will slow down the training speed.
We haven't tuned this result to the best, so have fun with playing these hyperparameters!
# C51 (single run)
One epoch here is equal to 100,000 env step, 100 epochs stand for 10M.
| task | best reward | reward curve | parameters |
| --------------------------- | ----------- | ------------------------------------- | ------------------------------------------------------------ |
| PongNoFrameskip-v4 | 20 | ![](results/c51/Pong_rew.png) | `python3 atari_c51.py --task "PongNoFrameskip-v4" --batch-size 64` |
| BreakoutNoFrameskip-v4 | 536.6 | ![](results/c51/Breakout_rew.png) | `python3 atari_c51.py --task "BreakoutNoFrameskip-v4" --n-step 1` |
| EnduroNoFrameskip-v4 | 1032 | ![](results/c51/Enduro_rew.png) | `python3 atari_c51.py --task "EnduroNoFrameskip-v4 " ` |
| QbertNoFrameskip-v4 | 16245 | ![](results/c51/Qbert_rew.png) | `python3 atari_c51.py --task "QbertNoFrameskip-v4"` |
| MsPacmanNoFrameskip-v4 | 3133 | ![](results/c51/MsPacman_rew.png) | `python3 atari_c51.py --task "MsPacmanNoFrameskip-v4"` |
| SeaquestNoFrameskip-v4 | 6226 | ![](results/c51/Seaquest_rew.png) | `python3 atari_c51.py --task "SeaquestNoFrameskip-v4"` |
| SpaceInvadersNoFrameskip-v4 | 988.5 | ![](results/c51/SpaceInvader_rew.png) | `python3 atari_c51.py --task "SpaceInvadersNoFrameskip-v4"` |
Note: The selection of `n_step` is based on Figure 6 in the [Rainbow](https://arxiv.org/abs/1710.02298) paper.
# QRDQN (single run)
One epoch here is equal to 100,000 env step, 100 epochs stand for 10M.
| task | best reward | reward curve | parameters |
| --------------------------- | ----------- | ------------------------------------- | ------------------------------------------------------------ |
| PongNoFrameskip-v4 | 20 | ![](results/qrdqn/Pong_rew.png) | `python3 atari_qrdqn.py --task "PongNoFrameskip-v4" --batch-size 64` |
| BreakoutNoFrameskip-v4 | 409.2 | ![](results/qrdqn/Breakout_rew.png) | `python3 atari_qrdqn.py --task "BreakoutNoFrameskip-v4" --n-step 1` |
| EnduroNoFrameskip-v4 | 1055.9 | ![](results/qrdqn/Enduro_rew.png) | `python3 atari_qrdqn.py --task "EnduroNoFrameskip-v4"` |
| QbertNoFrameskip-v4 | 14990 | ![](results/qrdqn/Qbert_rew.png) | `python3 atari_qrdqn.py --task "QbertNoFrameskip-v4"` |
| MsPacmanNoFrameskip-v4 | 2886 | ![](results/qrdqn/MsPacman_rew.png) | `python3 atari_qrdqn.py --task "MsPacmanNoFrameskip-v4"` |
| SeaquestNoFrameskip-v4 | 5676 | ![](results/qrdqn/Seaquest_rew.png) | `python3 atari_qrdqn.py --task "SeaquestNoFrameskip-v4"` |
| SpaceInvadersNoFrameskip-v4 | 938 | ![](results/qrdqn/SpaceInvader_rew.png) | `python3 atari_qrdqn.py --task "SpaceInvadersNoFrameskip-v4"` |
# BCQ
TODO: after the `done` issue fixed, the result should be re-tuned and place here.
To running BCQ algorithm on Atari, you need to do the following things:
- Train an expert, by using the command listed in the above DQN section;
- Generate buffer with noise: `python3 atari_dqn.py --task {your_task} --watch --resume-path log/{your_task}/dqn/policy.pth --eps-test 0.2 --buffer-size 1000000 --save-buffer-name expert.hdf5` (note that 1M Atari buffer cannot be saved as `.pkl` format because it is too large and will cause error);
- Train BCQ: `python3 atari_bcq.py --task {your_task} --load-buffer-name expert.hdf5`.