83 lines
2.7 KiB
Python
83 lines
2.7 KiB
Python
import torch
|
|
import numpy as np
|
|
from torch import nn
|
|
import torch.nn.functional as F
|
|
|
|
|
|
class Net(nn.Module):
|
|
def __init__(self, layer_num, state_shape, action_shape=0, device='cpu'):
|
|
super().__init__()
|
|
self.device = device
|
|
self.model = [
|
|
nn.Linear(np.prod(state_shape), 128),
|
|
nn.ReLU(inplace=True)]
|
|
for i in range(layer_num):
|
|
self.model += [nn.Linear(128, 128), nn.ReLU(inplace=True)]
|
|
if action_shape:
|
|
self.model += [nn.Linear(128, np.prod(action_shape))]
|
|
self.model = nn.Sequential(*self.model)
|
|
|
|
def forward(self, s, state=None, info={}):
|
|
if not isinstance(s, torch.Tensor):
|
|
s = torch.tensor(s, device=self.device, dtype=torch.float)
|
|
batch = s.shape[0]
|
|
s = s.view(batch, -1)
|
|
logits = self.model(s)
|
|
return logits, state
|
|
|
|
|
|
class Actor(nn.Module):
|
|
def __init__(self, preprocess_net, action_shape):
|
|
super().__init__()
|
|
self.preprocess = preprocess_net
|
|
self.last = nn.Linear(128, np.prod(action_shape))
|
|
|
|
def forward(self, s, state=None, info={}):
|
|
logits, h = self.preprocess(s, state)
|
|
logits = F.softmax(self.last(logits), dim=-1)
|
|
return logits, h
|
|
|
|
|
|
class Critic(nn.Module):
|
|
def __init__(self, preprocess_net):
|
|
super().__init__()
|
|
self.preprocess = preprocess_net
|
|
self.last = nn.Linear(128, 1)
|
|
|
|
def forward(self, s):
|
|
logits, h = self.preprocess(s, None)
|
|
logits = self.last(logits)
|
|
return logits
|
|
|
|
|
|
class DQN(nn.Module):
|
|
|
|
def __init__(self, h, w, action_shape, device='cpu'):
|
|
super(DQN, self).__init__()
|
|
self.device = device
|
|
|
|
self.conv1 = nn.Conv2d(4, 16, kernel_size=5, stride=2)
|
|
self.bn1 = nn.BatchNorm2d(16)
|
|
self.conv2 = nn.Conv2d(16, 32, kernel_size=5, stride=2)
|
|
self.bn2 = nn.BatchNorm2d(32)
|
|
self.conv3 = nn.Conv2d(32, 32, kernel_size=5, stride=2)
|
|
self.bn3 = nn.BatchNorm2d(32)
|
|
|
|
def conv2d_size_out(size, kernel_size=5, stride=2):
|
|
return (size - (kernel_size - 1) - 1) // stride + 1
|
|
|
|
convw = conv2d_size_out(conv2d_size_out(conv2d_size_out(w)))
|
|
convh = conv2d_size_out(conv2d_size_out(conv2d_size_out(h)))
|
|
linear_input_size = convw * convh * 32
|
|
self.fc = nn.Linear(linear_input_size, 512)
|
|
self.head = nn.Linear(512, action_shape)
|
|
|
|
def forward(self, x, state=None, info={}):
|
|
if not isinstance(x, torch.Tensor):
|
|
x = torch.tensor(x, device=self.device, dtype=torch.float)
|
|
x = F.relu(self.bn1(self.conv1(x)))
|
|
x = F.relu(self.bn2(self.conv2(x)))
|
|
x = F.relu(self.bn3(self.conv3(x)))
|
|
x = self.fc(x.reshape(x.size(0), -1))
|
|
return self.head(x), state
|