The new proposed feature is to have trainers as generators. The usage pattern is: ```python trainer = OnPolicyTrainer(...) for epoch, epoch_stat, info in trainer: print(f"Epoch: {epoch}") print(epoch_stat) print(info) do_something_with_policy() query_something_about_policy() make_a_plot_with(epoch_stat) display(info) ``` - epoch int: the epoch number - epoch_stat dict: a large collection of metrics of the current epoch, including stat - info dict: the usual dict out of the non-generator version of the trainer You can even iterate on several different trainers at the same time: ```python trainer1 = OnPolicyTrainer(...) trainer2 = OnPolicyTrainer(...) for result1, result2, ... in zip(trainer1, trainer2, ...): compare_results(result1, result2, ...) ``` Co-authored-by: Jiayi Weng <trinkle23897@gmail.com>
665 B
665 B
- I have marked all applicable categories:
- exception-raising bug
- RL algorithm bug
- documentation request (i.e. "X is missing from the documentation.")
- new feature request
- I have visited the source website
- I have searched through the issue tracker for duplicates
- I have mentioned version numbers, operating system and environment, where applicable:
import tianshou, gym, torch, numpy, sys print(tianshou.__version__, gym.__version__, torch.__version__, numpy.__version__, sys.version, sys.platform)