This is the first commit of 6 commits mentioned in #274, which features 1. Refactor of `Class Net` to support any form of MLP. 2. Enable type check in utils.network. 3. Relative change in docs/test/examples. 4. Move atari-related network to examples/atari/atari_network.py Co-authored-by: Trinkle23897 <trinkle23897@gmail.com>
106 lines
4.2 KiB
Python
106 lines
4.2 KiB
Python
import os
|
|
import torch
|
|
import pprint
|
|
import argparse
|
|
import numpy as np
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
|
|
from tianshou.policy import A2CPolicy
|
|
from tianshou.env import SubprocVectorEnv
|
|
from tianshou.utils.net.common import Net
|
|
from tianshou.trainer import onpolicy_trainer
|
|
from tianshou.data import Collector, ReplayBuffer
|
|
from tianshou.utils.net.discrete import Actor, Critic
|
|
|
|
from atari import create_atari_environment, preprocess_fn
|
|
|
|
|
|
def get_args():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('--task', type=str, default='Pong')
|
|
parser.add_argument('--seed', type=int, default=1626)
|
|
parser.add_argument('--buffer-size', type=int, default=20000)
|
|
parser.add_argument('--lr', type=float, default=3e-4)
|
|
parser.add_argument('--gamma', type=float, default=0.9)
|
|
parser.add_argument('--epoch', type=int, default=100)
|
|
parser.add_argument('--step-per-epoch', type=int, default=1000)
|
|
parser.add_argument('--collect-per-step', type=int, default=10)
|
|
parser.add_argument('--repeat-per-collect', type=int, default=1)
|
|
parser.add_argument('--batch-size', type=int, default=64)
|
|
parser.add_argument('--hidden-sizes', type=int,
|
|
nargs='*', default=[128, 128, 128])
|
|
parser.add_argument('--training-num', type=int, default=8)
|
|
parser.add_argument('--test-num', type=int, default=8)
|
|
parser.add_argument('--logdir', type=str, default='log')
|
|
parser.add_argument('--render', type=float, default=0.)
|
|
|
|
parser.add_argument(
|
|
'--device', type=str,
|
|
default='cuda' if torch.cuda.is_available() else 'cpu')
|
|
# a2c special
|
|
parser.add_argument('--vf-coef', type=float, default=0.5)
|
|
parser.add_argument('--ent-coef', type=float, default=0.001)
|
|
parser.add_argument('--max-grad-norm', type=float, default=None)
|
|
parser.add_argument('--max-episode-steps', type=int, default=2000)
|
|
return parser.parse_args()
|
|
|
|
|
|
def test_a2c(args=get_args()):
|
|
env = create_atari_environment(args.task)
|
|
args.state_shape = env.observation_space.shape or env.observation_space.n
|
|
args.action_shape = env.env.action_space.shape or env.env.action_space.n
|
|
# train_envs = gym.make(args.task)
|
|
train_envs = SubprocVectorEnv(
|
|
[lambda: create_atari_environment(args.task)
|
|
for _ in range(args.training_num)])
|
|
# test_envs = gym.make(args.task)
|
|
test_envs = SubprocVectorEnv(
|
|
[lambda: create_atari_environment(args.task)
|
|
for _ in range(args.test_num)])
|
|
# seed
|
|
np.random.seed(args.seed)
|
|
torch.manual_seed(args.seed)
|
|
train_envs.seed(args.seed)
|
|
test_envs.seed(args.seed)
|
|
# model
|
|
net = Net(args.state_shape, hidden_sizes=args.hidden_sizes,
|
|
device=args.device)
|
|
actor = Actor(net, args.action_shape).to(args.device)
|
|
critic = Critic(net).to(args.device)
|
|
optim = torch.optim.Adam(set(
|
|
actor.parameters()).union(critic.parameters()), lr=args.lr)
|
|
dist = torch.distributions.Categorical
|
|
policy = A2CPolicy(
|
|
actor, critic, optim, dist, args.gamma, vf_coef=args.vf_coef,
|
|
ent_coef=args.ent_coef, max_grad_norm=args.max_grad_norm)
|
|
# collector
|
|
train_collector = Collector(
|
|
policy, train_envs, ReplayBuffer(args.buffer_size),
|
|
preprocess_fn=preprocess_fn)
|
|
test_collector = Collector(policy, test_envs, preprocess_fn=preprocess_fn)
|
|
# log
|
|
writer = SummaryWriter(os.path.join(args.logdir, args.task, 'a2c'))
|
|
|
|
def stop_fn(mean_rewards):
|
|
if env.env.spec.reward_threshold:
|
|
return mean_rewards >= env.spec.reward_threshold
|
|
else:
|
|
return False
|
|
|
|
# trainer
|
|
result = onpolicy_trainer(
|
|
policy, train_collector, test_collector, args.epoch,
|
|
args.step_per_epoch, args.collect_per_step, args.repeat_per_collect,
|
|
args.test_num, args.batch_size, stop_fn=stop_fn, writer=writer)
|
|
if __name__ == '__main__':
|
|
pprint.pprint(result)
|
|
# Let's watch its performance!
|
|
env = create_atari_environment(args.task)
|
|
collector = Collector(policy, env, preprocess_fn=preprocess_fn)
|
|
result = collector.collect(n_episode=1, render=args.render)
|
|
print(f'Final reward: {result["rew"]}, length: {result["len"]}')
|
|
|
|
|
|
if __name__ == '__main__':
|
|
test_a2c()
|