Tianshou/test/base/env.py
Daniel Plop 8a0629ded6
Fix mypy issues in tests and examples (#1077)
Closes #952 

- `SamplingConfig` supports `batch_size=None`. #1077
- tests and examples are covered by `mypy`. #1077
- `NetBase` is more used, stricter typing by making it generic. #1077
- `utils.net.common.Recurrent` now receives and returns a
`RecurrentStateBatch` instead of a dict. #1077

---------

Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2024-04-03 18:07:51 +02:00

247 lines
8.8 KiB
Python

import random
import time
from copy import deepcopy
from typing import Any, Literal
import gymnasium as gym
import networkx as nx
import numpy as np
from gymnasium.spaces import Box, Dict, Discrete, MultiDiscrete, Space, Tuple
class MoveToRightEnv(gym.Env):
"""A task for "going right". The task is to go right ``size`` steps.
The observation is the current index, and the action is to go left or right.
Action 0 is to go left, and action 1 is to go right.
Taking action 0 at index 0 will keep the index at 0.
Arriving at index ``size`` means the task is done.
In the current implementation, stepping after the task is done is possible, which will
lead the index to be larger than ``size``.
Index 0 is the starting point. If reset is called with default options, the index will
be reset to 0.
"""
def __init__(
self,
size: int,
sleep: float = 0.0,
dict_state: bool = False,
recurse_state: bool = False,
ma_rew: int = 0,
multidiscrete_action: bool = False,
random_sleep: bool = False,
array_state: bool = False,
) -> None:
assert (
dict_state + recurse_state + array_state <= 1
), "dict_state / recurse_state / array_state can be only one true"
self.size = size
self.sleep = sleep
self.random_sleep = random_sleep
self.dict_state = dict_state
self.recurse_state = recurse_state
self.array_state = array_state
self.ma_rew = ma_rew
self._md_action = multidiscrete_action
# how many steps this env has stepped
self.steps = 0
if dict_state:
self.observation_space = Dict(
{
"index": Box(shape=(1,), low=0, high=size - 1),
"rand": Box(shape=(1,), low=0, high=1, dtype=np.float64),
},
)
elif recurse_state:
self.observation_space = Dict(
{
"index": Box(shape=(1,), low=0, high=size - 1),
"dict": Dict(
{
"tuple": Tuple(
(
Discrete(2),
Box(shape=(2,), low=0, high=1, dtype=np.float64),
),
),
"rand": Box(shape=(1, 2), low=0, high=1, dtype=np.float64),
},
),
},
)
elif array_state:
self.observation_space = Box(shape=(4, 84, 84), low=0, high=255)
else:
self.observation_space = Box(shape=(1,), low=0, high=size - 1)
if multidiscrete_action:
self.action_space = MultiDiscrete([2, 2])
else:
self.action_space = Discrete(2)
self.terminated = False
self.index = 0
def reset(
self,
seed: int | None = None,
# TODO: passing a dict here doesn't make any sense
options: dict[str, Any] | None = None,
) -> tuple[dict[str, Any] | np.ndarray, dict]:
""":param seed:
:param options: the start index is provided in options["state"]
:return:
"""
if options is None:
options = {"state": 0}
super().reset(seed=seed)
self.terminated = False
self.do_sleep()
self.index = options["state"]
return self._get_state(), {"key": 1, "env": self}
def _get_reward(self) -> list[int] | int:
"""Generate a non-scalar reward if ma_rew is True."""
end_flag = int(self.terminated)
if self.ma_rew > 0:
return [end_flag] * self.ma_rew
return end_flag
def _get_state(self) -> dict[str, Any] | np.ndarray:
"""Generate state(observation) of MyTestEnv."""
if self.dict_state:
return {
"index": np.array([self.index], dtype=np.float32),
"rand": self.np_random.random(1),
}
if self.recurse_state:
return {
"index": np.array([self.index], dtype=np.float32),
"dict": {
"tuple": (np.array([1], dtype=int), self.np_random.random(2)),
"rand": self.np_random.random((1, 2)),
},
}
if self.array_state:
img = np.zeros([4, 84, 84], int)
img[3, np.arange(84), np.arange(84)] = self.index
img[2, np.arange(84)] = self.index
img[1, :, np.arange(84)] = self.index
img[0] = self.index
return img
return np.array([self.index], dtype=np.float32)
def do_sleep(self) -> None:
if self.sleep > 0:
sleep_time = random.random() if self.random_sleep else 1
sleep_time *= self.sleep
time.sleep(sleep_time)
def step(self, action: np.ndarray | int): # type: ignore[no-untyped-def] # cf. issue #1080
self.steps += 1
if self._md_action and isinstance(action, np.ndarray):
action = action[0]
if self.terminated:
raise ValueError("step after done !!!")
self.do_sleep()
if self.index == self.size:
self.terminated = True
return self._get_state(), self._get_reward(), self.terminated, False, {}
if action == 0:
self.index = max(self.index - 1, 0)
return (
self._get_state(),
self._get_reward(),
self.terminated,
False,
{"key": 1, "env": self} if self.dict_state else {},
)
if action == 1:
self.index += 1
self.terminated = self.index == self.size
return (
self._get_state(),
self._get_reward(),
self.terminated,
False,
{"key": 1, "env": self},
)
return None
class NXEnv(gym.Env):
def __init__(self, size: int, obs_type: str, feat_dim: int = 32) -> None:
self.size = size
self.feat_dim = feat_dim
self.graph = nx.Graph()
self.graph.add_nodes_from(list(range(size)))
assert obs_type in ["array", "object"]
self.obs_type = obs_type
def _encode_obs(self) -> np.ndarray | nx.Graph:
if self.obs_type == "array":
return np.stack([v["data"] for v in self.graph._node.values()])
return deepcopy(self.graph)
def reset(
self,
seed: int | None = None,
options: dict[str, Any] | None = None,
) -> tuple[np.ndarray | nx.Graph, dict]:
super().reset(seed=seed)
graph_state = np.random.rand(self.size, self.feat_dim)
for i in range(self.size):
self.graph.nodes[i]["data"] = graph_state[i]
return self._encode_obs(), {}
def step(
self,
action: Space,
) -> tuple[np.ndarray | nx.Graph, float, Literal[False], Literal[False], dict]:
next_graph_state = np.random.rand(self.size, self.feat_dim)
for i in range(self.size):
self.graph.nodes[i]["data"] = next_graph_state[i]
return self._encode_obs(), 1.0, False, False, {}
class MyGoalEnv(MoveToRightEnv):
def __init__(self, *args: Any, **kwargs: Any) -> None:
assert (
kwargs.get("dict_state", 0) + kwargs.get("recurse_state", 0) == 0
), "dict_state / recurse_state not supported"
super().__init__(*args, **kwargs)
obs, _ = super().reset(options={"state": 0})
obs, _, _, _, _ = super().step(1)
self._goal = obs * self.size
super_obsv = self.observation_space
self.observation_space = gym.spaces.Dict(
{
"observation": super_obsv,
"achieved_goal": super_obsv,
"desired_goal": super_obsv,
},
)
def reset(self, *args: Any, **kwargs: Any) -> tuple[dict[str, Any], dict]:
obs, info = super().reset(*args, **kwargs)
new_obs = {"observation": obs, "achieved_goal": obs, "desired_goal": self._goal}
return new_obs, info
def step(self, *args: Any, **kwargs: Any) -> tuple[dict[str, Any], float, bool, bool, dict]:
obs_next, rew, terminated, truncated, info = super().step(*args, **kwargs)
new_obs_next = {
"observation": obs_next,
"achieved_goal": obs_next,
"desired_goal": self._goal,
}
return new_obs_next, rew, terminated, truncated, info
def compute_reward_fn(
self,
achieved_goal: np.ndarray,
desired_goal: np.ndarray,
info: dict,
) -> np.ndarray:
axis: tuple[int, ...] = (-3, -2, -1) if self.array_state else (-1,)
return (achieved_goal == desired_goal).all(axis=axis)