Tianshou/test/base/env.py

247 lines
8.8 KiB
Python
Raw Normal View History

import random
import time
from copy import deepcopy
from typing import Any, Literal
import gymnasium as gym
import networkx as nx
import numpy as np
from gymnasium.spaces import Box, Dict, Discrete, MultiDiscrete, Space, Tuple
2020-03-21 10:58:01 +08:00
class MoveToRightEnv(gym.Env):
"""A task for "going right". The task is to go right ``size`` steps.
The observation is the current index, and the action is to go left or right.
Action 0 is to go left, and action 1 is to go right.
Taking action 0 at index 0 will keep the index at 0.
Arriving at index ``size`` means the task is done.
In the current implementation, stepping after the task is done is possible, which will
lead the index to be larger than ``size``.
Index 0 is the starting point. If reset is called with default options, the index will
be reset to 0.
"""
def __init__(
self,
size: int,
sleep: float = 0.0,
dict_state: bool = False,
recurse_state: bool = False,
ma_rew: int = 0,
multidiscrete_action: bool = False,
random_sleep: bool = False,
array_state: bool = False,
) -> None:
assert (
dict_state + recurse_state + array_state <= 1
), "dict_state / recurse_state / array_state can be only one true"
2020-03-21 10:58:01 +08:00
self.size = size
self.sleep = sleep
self.random_sleep = random_sleep
2020-04-28 20:56:02 +08:00
self.dict_state = dict_state
self.recurse_state = recurse_state
self.array_state = array_state
self.ma_rew = ma_rew
self._md_action = multidiscrete_action
# how many steps this env has stepped
self.steps = 0
if dict_state:
self.observation_space = Dict(
{
"index": Box(shape=(1,), low=0, high=size - 1),
"rand": Box(shape=(1,), low=0, high=1, dtype=np.float64),
},
)
elif recurse_state:
self.observation_space = Dict(
{
"index": Box(shape=(1,), low=0, high=size - 1),
"dict": Dict(
{
"tuple": Tuple(
(
Discrete(2),
Box(shape=(2,), low=0, high=1, dtype=np.float64),
),
),
"rand": Box(shape=(1, 2), low=0, high=1, dtype=np.float64),
},
),
},
)
elif array_state:
self.observation_space = Box(shape=(4, 84, 84), low=0, high=255)
else:
self.observation_space = Box(shape=(1,), low=0, high=size - 1)
if multidiscrete_action:
self.action_space = MultiDiscrete([2, 2])
else:
self.action_space = Discrete(2)
self.terminated = False
self.index = 0
2020-03-21 10:58:01 +08:00
def reset(
self,
seed: int | None = None,
# TODO: passing a dict here doesn't make any sense
options: dict[str, Any] | None = None,
) -> tuple[dict[str, Any] | np.ndarray, dict]:
""":param seed:
:param options: the start index is provided in options["state"]
:return:
"""
if options is None:
options = {"state": 0}
super().reset(seed=seed)
self.terminated = False
self.do_sleep()
self.index = options["state"]
return self._get_state(), {"key": 1, "env": self}
def _get_reward(self) -> list[int] | int:
"""Generate a non-scalar reward if ma_rew is True."""
end_flag = int(self.terminated)
if self.ma_rew > 0:
return [end_flag] * self.ma_rew
return end_flag
def _get_state(self) -> dict[str, Any] | np.ndarray:
"""Generate state(observation) of MyTestEnv."""
if self.dict_state:
return {
"index": np.array([self.index], dtype=np.float32),
"rand": self.np_random.random(1),
}
if self.recurse_state:
return {
"index": np.array([self.index], dtype=np.float32),
"dict": {
"tuple": (np.array([1], dtype=int), self.np_random.random(2)),
"rand": self.np_random.random((1, 2)),
},
}
if self.array_state:
img = np.zeros([4, 84, 84], int)
img[3, np.arange(84), np.arange(84)] = self.index
img[2, np.arange(84)] = self.index
img[1, :, np.arange(84)] = self.index
img[0] = self.index
return img
return np.array([self.index], dtype=np.float32)
2020-03-21 10:58:01 +08:00
def do_sleep(self) -> None:
if self.sleep > 0:
sleep_time = random.random() if self.random_sleep else 1
sleep_time *= self.sleep
time.sleep(sleep_time)
def step(self, action: np.ndarray | int): # type: ignore[no-untyped-def] # cf. issue #1080
self.steps += 1
if self._md_action and isinstance(action, np.ndarray):
action = action[0]
if self.terminated:
raise ValueError("step after done !!!")
self.do_sleep()
2020-03-21 10:58:01 +08:00
if self.index == self.size:
self.terminated = True
return self._get_state(), self._get_reward(), self.terminated, False, {}
2020-03-21 10:58:01 +08:00
if action == 0:
self.index = max(self.index - 1, 0)
return (
self._get_state(),
self._get_reward(),
self.terminated,
False,
{"key": 1, "env": self} if self.dict_state else {},
)
if action == 1:
2020-03-21 10:58:01 +08:00
self.index += 1
self.terminated = self.index == self.size
return (
self._get_state(),
self._get_reward(),
self.terminated,
False,
{"key": 1, "env": self},
)
return None
class NXEnv(gym.Env):
def __init__(self, size: int, obs_type: str, feat_dim: int = 32) -> None:
self.size = size
self.feat_dim = feat_dim
self.graph = nx.Graph()
self.graph.add_nodes_from(list(range(size)))
assert obs_type in ["array", "object"]
self.obs_type = obs_type
def _encode_obs(self) -> np.ndarray | nx.Graph:
if self.obs_type == "array":
return np.stack([v["data"] for v in self.graph._node.values()])
return deepcopy(self.graph)
def reset(
self,
seed: int | None = None,
options: dict[str, Any] | None = None,
) -> tuple[np.ndarray | nx.Graph, dict]:
super().reset(seed=seed)
graph_state = np.random.rand(self.size, self.feat_dim)
for i in range(self.size):
self.graph.nodes[i]["data"] = graph_state[i]
return self._encode_obs(), {}
def step(
self,
action: Space,
) -> tuple[np.ndarray | nx.Graph, float, Literal[False], Literal[False], dict]:
next_graph_state = np.random.rand(self.size, self.feat_dim)
for i in range(self.size):
self.graph.nodes[i]["data"] = next_graph_state[i]
return self._encode_obs(), 1.0, False, False, {}
Hindsight Experience Replay as a replay buffer (#753) ## implementation I implemented HER solely as a replay buffer. It is done by temporarily directly re-writing transitions storage (`self._meta`) during the `sample_indices()` call. The original transitions are cached and will be restored at the beginning of the next sampling or when other methods is called. This will make sure that. for example, n-step return calculation can be done without altering the policy. There is also a problem with the original indices sampling. The sampled indices are not guaranteed to be from different episodes. So I decided to perform re-writing based on the episode. This guarantees that the sampled transitions from the same episode will have the same re-written goal. This also make the re-writing ratio calculation slightly differ from the paper, but it won't be too different if there are many episodes in the buffer. In the current commit, HER replay buffer only support 'future' strategy and online sampling. This is the best of HER in term of performance and memory efficiency. I also add a few more convenient replay buffers (`HERVectorReplayBuffer`, `HERReplayBufferManager`), test env (`MyGoalEnv`), gym wrapper (`TruncatedAsTerminated`), unit tests, and a simple example (examples/offline/fetch_her_ddpg.py). ## verification I have added unit tests for almost everything I have implemented. HER replay buffer was also tested using DDPG on [`FetchReach-v3` env](https://github.com/Farama-Foundation/Gymnasium-Robotics). I used default DDPG parameters from mujoco example and didn't tune anything further to get this good result! (train script: examples/offline/fetch_her_ddpg.py). ![Screen Shot 2022-10-02 at 19 22 53](https://user-images.githubusercontent.com/42699114/193454066-0dd0c65c-fd5f-4587-8912-b441d39de88a.png)
2022-10-31 08:54:54 +09:00
class MyGoalEnv(MoveToRightEnv):
def __init__(self, *args: Any, **kwargs: Any) -> None:
assert (
kwargs.get("dict_state", 0) + kwargs.get("recurse_state", 0) == 0
), "dict_state / recurse_state not supported"
Hindsight Experience Replay as a replay buffer (#753) ## implementation I implemented HER solely as a replay buffer. It is done by temporarily directly re-writing transitions storage (`self._meta`) during the `sample_indices()` call. The original transitions are cached and will be restored at the beginning of the next sampling or when other methods is called. This will make sure that. for example, n-step return calculation can be done without altering the policy. There is also a problem with the original indices sampling. The sampled indices are not guaranteed to be from different episodes. So I decided to perform re-writing based on the episode. This guarantees that the sampled transitions from the same episode will have the same re-written goal. This also make the re-writing ratio calculation slightly differ from the paper, but it won't be too different if there are many episodes in the buffer. In the current commit, HER replay buffer only support 'future' strategy and online sampling. This is the best of HER in term of performance and memory efficiency. I also add a few more convenient replay buffers (`HERVectorReplayBuffer`, `HERReplayBufferManager`), test env (`MyGoalEnv`), gym wrapper (`TruncatedAsTerminated`), unit tests, and a simple example (examples/offline/fetch_her_ddpg.py). ## verification I have added unit tests for almost everything I have implemented. HER replay buffer was also tested using DDPG on [`FetchReach-v3` env](https://github.com/Farama-Foundation/Gymnasium-Robotics). I used default DDPG parameters from mujoco example and didn't tune anything further to get this good result! (train script: examples/offline/fetch_her_ddpg.py). ![Screen Shot 2022-10-02 at 19 22 53](https://user-images.githubusercontent.com/42699114/193454066-0dd0c65c-fd5f-4587-8912-b441d39de88a.png)
2022-10-31 08:54:54 +09:00
super().__init__(*args, **kwargs)
obs, _ = super().reset(options={"state": 0})
Hindsight Experience Replay as a replay buffer (#753) ## implementation I implemented HER solely as a replay buffer. It is done by temporarily directly re-writing transitions storage (`self._meta`) during the `sample_indices()` call. The original transitions are cached and will be restored at the beginning of the next sampling or when other methods is called. This will make sure that. for example, n-step return calculation can be done without altering the policy. There is also a problem with the original indices sampling. The sampled indices are not guaranteed to be from different episodes. So I decided to perform re-writing based on the episode. This guarantees that the sampled transitions from the same episode will have the same re-written goal. This also make the re-writing ratio calculation slightly differ from the paper, but it won't be too different if there are many episodes in the buffer. In the current commit, HER replay buffer only support 'future' strategy and online sampling. This is the best of HER in term of performance and memory efficiency. I also add a few more convenient replay buffers (`HERVectorReplayBuffer`, `HERReplayBufferManager`), test env (`MyGoalEnv`), gym wrapper (`TruncatedAsTerminated`), unit tests, and a simple example (examples/offline/fetch_her_ddpg.py). ## verification I have added unit tests for almost everything I have implemented. HER replay buffer was also tested using DDPG on [`FetchReach-v3` env](https://github.com/Farama-Foundation/Gymnasium-Robotics). I used default DDPG parameters from mujoco example and didn't tune anything further to get this good result! (train script: examples/offline/fetch_her_ddpg.py). ![Screen Shot 2022-10-02 at 19 22 53](https://user-images.githubusercontent.com/42699114/193454066-0dd0c65c-fd5f-4587-8912-b441d39de88a.png)
2022-10-31 08:54:54 +09:00
obs, _, _, _, _ = super().step(1)
self._goal = obs * self.size
super_obsv = self.observation_space
self.observation_space = gym.spaces.Dict(
{
"observation": super_obsv,
"achieved_goal": super_obsv,
"desired_goal": super_obsv,
},
Hindsight Experience Replay as a replay buffer (#753) ## implementation I implemented HER solely as a replay buffer. It is done by temporarily directly re-writing transitions storage (`self._meta`) during the `sample_indices()` call. The original transitions are cached and will be restored at the beginning of the next sampling or when other methods is called. This will make sure that. for example, n-step return calculation can be done without altering the policy. There is also a problem with the original indices sampling. The sampled indices are not guaranteed to be from different episodes. So I decided to perform re-writing based on the episode. This guarantees that the sampled transitions from the same episode will have the same re-written goal. This also make the re-writing ratio calculation slightly differ from the paper, but it won't be too different if there are many episodes in the buffer. In the current commit, HER replay buffer only support 'future' strategy and online sampling. This is the best of HER in term of performance and memory efficiency. I also add a few more convenient replay buffers (`HERVectorReplayBuffer`, `HERReplayBufferManager`), test env (`MyGoalEnv`), gym wrapper (`TruncatedAsTerminated`), unit tests, and a simple example (examples/offline/fetch_her_ddpg.py). ## verification I have added unit tests for almost everything I have implemented. HER replay buffer was also tested using DDPG on [`FetchReach-v3` env](https://github.com/Farama-Foundation/Gymnasium-Robotics). I used default DDPG parameters from mujoco example and didn't tune anything further to get this good result! (train script: examples/offline/fetch_her_ddpg.py). ![Screen Shot 2022-10-02 at 19 22 53](https://user-images.githubusercontent.com/42699114/193454066-0dd0c65c-fd5f-4587-8912-b441d39de88a.png)
2022-10-31 08:54:54 +09:00
)
def reset(self, *args: Any, **kwargs: Any) -> tuple[dict[str, Any], dict]:
Hindsight Experience Replay as a replay buffer (#753) ## implementation I implemented HER solely as a replay buffer. It is done by temporarily directly re-writing transitions storage (`self._meta`) during the `sample_indices()` call. The original transitions are cached and will be restored at the beginning of the next sampling or when other methods is called. This will make sure that. for example, n-step return calculation can be done without altering the policy. There is also a problem with the original indices sampling. The sampled indices are not guaranteed to be from different episodes. So I decided to perform re-writing based on the episode. This guarantees that the sampled transitions from the same episode will have the same re-written goal. This also make the re-writing ratio calculation slightly differ from the paper, but it won't be too different if there are many episodes in the buffer. In the current commit, HER replay buffer only support 'future' strategy and online sampling. This is the best of HER in term of performance and memory efficiency. I also add a few more convenient replay buffers (`HERVectorReplayBuffer`, `HERReplayBufferManager`), test env (`MyGoalEnv`), gym wrapper (`TruncatedAsTerminated`), unit tests, and a simple example (examples/offline/fetch_her_ddpg.py). ## verification I have added unit tests for almost everything I have implemented. HER replay buffer was also tested using DDPG on [`FetchReach-v3` env](https://github.com/Farama-Foundation/Gymnasium-Robotics). I used default DDPG parameters from mujoco example and didn't tune anything further to get this good result! (train script: examples/offline/fetch_her_ddpg.py). ![Screen Shot 2022-10-02 at 19 22 53](https://user-images.githubusercontent.com/42699114/193454066-0dd0c65c-fd5f-4587-8912-b441d39de88a.png)
2022-10-31 08:54:54 +09:00
obs, info = super().reset(*args, **kwargs)
new_obs = {"observation": obs, "achieved_goal": obs, "desired_goal": self._goal}
Hindsight Experience Replay as a replay buffer (#753) ## implementation I implemented HER solely as a replay buffer. It is done by temporarily directly re-writing transitions storage (`self._meta`) during the `sample_indices()` call. The original transitions are cached and will be restored at the beginning of the next sampling or when other methods is called. This will make sure that. for example, n-step return calculation can be done without altering the policy. There is also a problem with the original indices sampling. The sampled indices are not guaranteed to be from different episodes. So I decided to perform re-writing based on the episode. This guarantees that the sampled transitions from the same episode will have the same re-written goal. This also make the re-writing ratio calculation slightly differ from the paper, but it won't be too different if there are many episodes in the buffer. In the current commit, HER replay buffer only support 'future' strategy and online sampling. This is the best of HER in term of performance and memory efficiency. I also add a few more convenient replay buffers (`HERVectorReplayBuffer`, `HERReplayBufferManager`), test env (`MyGoalEnv`), gym wrapper (`TruncatedAsTerminated`), unit tests, and a simple example (examples/offline/fetch_her_ddpg.py). ## verification I have added unit tests for almost everything I have implemented. HER replay buffer was also tested using DDPG on [`FetchReach-v3` env](https://github.com/Farama-Foundation/Gymnasium-Robotics). I used default DDPG parameters from mujoco example and didn't tune anything further to get this good result! (train script: examples/offline/fetch_her_ddpg.py). ![Screen Shot 2022-10-02 at 19 22 53](https://user-images.githubusercontent.com/42699114/193454066-0dd0c65c-fd5f-4587-8912-b441d39de88a.png)
2022-10-31 08:54:54 +09:00
return new_obs, info
def step(self, *args: Any, **kwargs: Any) -> tuple[dict[str, Any], float, bool, bool, dict]:
Hindsight Experience Replay as a replay buffer (#753) ## implementation I implemented HER solely as a replay buffer. It is done by temporarily directly re-writing transitions storage (`self._meta`) during the `sample_indices()` call. The original transitions are cached and will be restored at the beginning of the next sampling or when other methods is called. This will make sure that. for example, n-step return calculation can be done without altering the policy. There is also a problem with the original indices sampling. The sampled indices are not guaranteed to be from different episodes. So I decided to perform re-writing based on the episode. This guarantees that the sampled transitions from the same episode will have the same re-written goal. This also make the re-writing ratio calculation slightly differ from the paper, but it won't be too different if there are many episodes in the buffer. In the current commit, HER replay buffer only support 'future' strategy and online sampling. This is the best of HER in term of performance and memory efficiency. I also add a few more convenient replay buffers (`HERVectorReplayBuffer`, `HERReplayBufferManager`), test env (`MyGoalEnv`), gym wrapper (`TruncatedAsTerminated`), unit tests, and a simple example (examples/offline/fetch_her_ddpg.py). ## verification I have added unit tests for almost everything I have implemented. HER replay buffer was also tested using DDPG on [`FetchReach-v3` env](https://github.com/Farama-Foundation/Gymnasium-Robotics). I used default DDPG parameters from mujoco example and didn't tune anything further to get this good result! (train script: examples/offline/fetch_her_ddpg.py). ![Screen Shot 2022-10-02 at 19 22 53](https://user-images.githubusercontent.com/42699114/193454066-0dd0c65c-fd5f-4587-8912-b441d39de88a.png)
2022-10-31 08:54:54 +09:00
obs_next, rew, terminated, truncated, info = super().step(*args, **kwargs)
new_obs_next = {
"observation": obs_next,
"achieved_goal": obs_next,
"desired_goal": self._goal,
Hindsight Experience Replay as a replay buffer (#753) ## implementation I implemented HER solely as a replay buffer. It is done by temporarily directly re-writing transitions storage (`self._meta`) during the `sample_indices()` call. The original transitions are cached and will be restored at the beginning of the next sampling or when other methods is called. This will make sure that. for example, n-step return calculation can be done without altering the policy. There is also a problem with the original indices sampling. The sampled indices are not guaranteed to be from different episodes. So I decided to perform re-writing based on the episode. This guarantees that the sampled transitions from the same episode will have the same re-written goal. This also make the re-writing ratio calculation slightly differ from the paper, but it won't be too different if there are many episodes in the buffer. In the current commit, HER replay buffer only support 'future' strategy and online sampling. This is the best of HER in term of performance and memory efficiency. I also add a few more convenient replay buffers (`HERVectorReplayBuffer`, `HERReplayBufferManager`), test env (`MyGoalEnv`), gym wrapper (`TruncatedAsTerminated`), unit tests, and a simple example (examples/offline/fetch_her_ddpg.py). ## verification I have added unit tests for almost everything I have implemented. HER replay buffer was also tested using DDPG on [`FetchReach-v3` env](https://github.com/Farama-Foundation/Gymnasium-Robotics). I used default DDPG parameters from mujoco example and didn't tune anything further to get this good result! (train script: examples/offline/fetch_her_ddpg.py). ![Screen Shot 2022-10-02 at 19 22 53](https://user-images.githubusercontent.com/42699114/193454066-0dd0c65c-fd5f-4587-8912-b441d39de88a.png)
2022-10-31 08:54:54 +09:00
}
return new_obs_next, rew, terminated, truncated, info
def compute_reward_fn(
self,
achieved_goal: np.ndarray,
desired_goal: np.ndarray,
info: dict,
Hindsight Experience Replay as a replay buffer (#753) ## implementation I implemented HER solely as a replay buffer. It is done by temporarily directly re-writing transitions storage (`self._meta`) during the `sample_indices()` call. The original transitions are cached and will be restored at the beginning of the next sampling or when other methods is called. This will make sure that. for example, n-step return calculation can be done without altering the policy. There is also a problem with the original indices sampling. The sampled indices are not guaranteed to be from different episodes. So I decided to perform re-writing based on the episode. This guarantees that the sampled transitions from the same episode will have the same re-written goal. This also make the re-writing ratio calculation slightly differ from the paper, but it won't be too different if there are many episodes in the buffer. In the current commit, HER replay buffer only support 'future' strategy and online sampling. This is the best of HER in term of performance and memory efficiency. I also add a few more convenient replay buffers (`HERVectorReplayBuffer`, `HERReplayBufferManager`), test env (`MyGoalEnv`), gym wrapper (`TruncatedAsTerminated`), unit tests, and a simple example (examples/offline/fetch_her_ddpg.py). ## verification I have added unit tests for almost everything I have implemented. HER replay buffer was also tested using DDPG on [`FetchReach-v3` env](https://github.com/Farama-Foundation/Gymnasium-Robotics). I used default DDPG parameters from mujoco example and didn't tune anything further to get this good result! (train script: examples/offline/fetch_her_ddpg.py). ![Screen Shot 2022-10-02 at 19 22 53](https://user-images.githubusercontent.com/42699114/193454066-0dd0c65c-fd5f-4587-8912-b441d39de88a.png)
2022-10-31 08:54:54 +09:00
) -> np.ndarray:
axis: tuple[int, ...] = (-3, -2, -1) if self.array_state else (-1,)
Hindsight Experience Replay as a replay buffer (#753) ## implementation I implemented HER solely as a replay buffer. It is done by temporarily directly re-writing transitions storage (`self._meta`) during the `sample_indices()` call. The original transitions are cached and will be restored at the beginning of the next sampling or when other methods is called. This will make sure that. for example, n-step return calculation can be done without altering the policy. There is also a problem with the original indices sampling. The sampled indices are not guaranteed to be from different episodes. So I decided to perform re-writing based on the episode. This guarantees that the sampled transitions from the same episode will have the same re-written goal. This also make the re-writing ratio calculation slightly differ from the paper, but it won't be too different if there are many episodes in the buffer. In the current commit, HER replay buffer only support 'future' strategy and online sampling. This is the best of HER in term of performance and memory efficiency. I also add a few more convenient replay buffers (`HERVectorReplayBuffer`, `HERReplayBufferManager`), test env (`MyGoalEnv`), gym wrapper (`TruncatedAsTerminated`), unit tests, and a simple example (examples/offline/fetch_her_ddpg.py). ## verification I have added unit tests for almost everything I have implemented. HER replay buffer was also tested using DDPG on [`FetchReach-v3` env](https://github.com/Farama-Foundation/Gymnasium-Robotics). I used default DDPG parameters from mujoco example and didn't tune anything further to get this good result! (train script: examples/offline/fetch_her_ddpg.py). ![Screen Shot 2022-10-02 at 19 22 53](https://user-images.githubusercontent.com/42699114/193454066-0dd0c65c-fd5f-4587-8912-b441d39de88a.png)
2022-10-31 08:54:54 +09:00
return (achieved_goal == desired_goal).all(axis=axis)