Tianshou/tianshou/highlevel/params/lr_scheduler.py
Dominik Jain e993425aa1 Add high-level API support for TD3
* Created mixins for agent factories to reduce code duplication
 * Further factorised params & mixins for experiment factories
 * Additional parameter abstractions
 * Implement high-level MuJoCo TD3 example
2023-10-18 20:44:16 +02:00

26 lines
828 B
Python

from abc import ABC, abstractmethod
import numpy as np
import torch
from torch.optim.lr_scheduler import LambdaLR, LRScheduler
from tianshou.highlevel.config import RLSamplingConfig
class LRSchedulerFactory(ABC):
@abstractmethod
def create_scheduler(self, optim: torch.optim.Optimizer) -> LRScheduler:
pass
class LinearLRSchedulerFactory(LRSchedulerFactory):
def __init__(self, sampling_config: RLSamplingConfig):
self.sampling_config = sampling_config
def create_scheduler(self, optim: torch.optim.Optimizer) -> LRScheduler:
max_update_num = (
np.ceil(self.sampling_config.step_per_epoch / self.sampling_config.step_per_collect)
* self.sampling_config.num_epochs
)
return LambdaLR(optim, lr_lambda=lambda epoch: 1 - epoch / max_update_num)