2020-02-08 18:28:03 +08:00
2019-07-01 00:12:20 +08:00
2020-02-08 18:23:23 +08:00
2020-02-08 18:23:23 +08:00
2020-01-17 12:30:26 +08:00
2020-01-28 11:31:04 +08:00
2020-02-08 18:28:03 +08:00

Truly Proximal Policy Optimization

Source code for the paper: Truly Proximal Policy Optmization. The original code was forked from OpenAI baselines.

Method is tested on MuJoCo continuous control tasks and Atari discrete game tasks in OpenAI gym. Networks are trained using tensorflow1.10 and Python 3.6.

Installation

git clone --recursive https://github.com/wangyuhuix/TrulyPPO
cd TrulyPPO
pip install -r requirements.txt

Usage

Command Line arguments

  • env: environment ID
  • seed: random seed
  • num_timesteps: number of timesteps

Continuous Task

python -m baselines.ppo2_AdaClip.run --alg=trulyppo --env=InvertedPendulum-v2 --seed=0

You can try --alg=pporb for PPO-RB and --alg-trppo for TR-PPO.

Discrete Task

python -m baselines.ppo2_AdaClip.run --alg=trulyppo --env=BeamRiderNoFrameskip-v4 --seed=0 --isatari
Description
No description provided
Readme 3.3 MiB
Languages
Python 100%