Compare commits
27 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
5bb027b386 | ||
|
|
9efe269688 | ||
|
|
fb8c3793b4 | ||
|
|
fb6d69f43a | ||
|
|
125693ce1c | ||
|
|
2e7f406d49 | ||
|
|
690ecf07dc | ||
|
|
ac1c12f743 | ||
|
|
3c84b404a8 | ||
|
|
d5b70e2b86 | ||
|
|
c3532fa797 | ||
|
|
73029635fe | ||
|
|
e1c41f4371 | ||
|
|
f55c61c6cf | ||
|
|
051d4d6ee2 | ||
|
|
ef3a5552e7 | ||
|
|
0c4224da18 | ||
|
|
256a81f658 | ||
|
|
cfd34f1eba | ||
|
|
4ffbe37873 | ||
|
|
24ef72d528 | ||
|
|
a4afcb22a6 | ||
|
|
b0f6b8583d | ||
|
|
38cba80068 | ||
|
|
c0a6cd56a1 | ||
|
|
d756d1bb8c | ||
|
|
60681fce1d |
95
README.md
95
README.md
@ -1,9 +1,100 @@
|
||||
<img src="./dreamer4-fig2.png" width="400px"></img>
|
||||
|
||||
## Dreamer 4 (wip)
|
||||
## Dreamer 4
|
||||
|
||||
Implementation of Danijar's [latest iteration](https://arxiv.org/abs/2509.24527v1) for his [Dreamer](https://danijar.com/project/dreamer4/) line of work
|
||||
|
||||
[Discord channel](https://discord.gg/PmGR7KRwxq) for collaborating with other researchers interested in this work
|
||||
|
||||
## Appreciation
|
||||
|
||||
- [@dirkmcpherson](https://github.com/dirkmcpherson) for fixes to typo errors and unpassed arguments!
|
||||
|
||||
## Install
|
||||
|
||||
```bash
|
||||
$ pip install dreamer4
|
||||
```
|
||||
|
||||
## Usage
|
||||
|
||||
```python
|
||||
import torch
|
||||
from dreamer4 import VideoTokenizer, DynamicsWorldModel
|
||||
|
||||
# video tokenizer, learned through MAE + lpips
|
||||
|
||||
tokenizer = VideoTokenizer(
|
||||
dim = 512,
|
||||
dim_latent = 32,
|
||||
patch_size = 32,
|
||||
image_height = 256,
|
||||
image_width = 256
|
||||
)
|
||||
|
||||
video = torch.randn(2, 3, 10, 256, 256)
|
||||
|
||||
# learn the tokenizer
|
||||
|
||||
loss = tokenizer(video)
|
||||
loss.backward()
|
||||
|
||||
# dynamics world model
|
||||
|
||||
world_model = DynamicsWorldModel(
|
||||
dim = 512,
|
||||
dim_latent = 32,
|
||||
video_tokenizer = tokenizer,
|
||||
num_discrete_actions = 4,
|
||||
num_residual_streams = 1
|
||||
)
|
||||
|
||||
# state, action, rewards
|
||||
|
||||
video = torch.randn(2, 3, 10, 256, 256)
|
||||
discrete_actions = torch.randint(0, 4, (2, 10, 1))
|
||||
rewards = torch.randn(2, 10)
|
||||
|
||||
# learn dynamics / behavior cloned model
|
||||
|
||||
loss = world_model(
|
||||
video = video,
|
||||
rewards = rewards,
|
||||
discrete_actions = discrete_actions
|
||||
)
|
||||
|
||||
loss.backward()
|
||||
|
||||
# do the above with much data
|
||||
|
||||
# then generate dreams
|
||||
|
||||
dreams = world_model.generate(
|
||||
10,
|
||||
batch_size = 2,
|
||||
return_decoded_video = True,
|
||||
return_for_policy_optimization = True
|
||||
)
|
||||
|
||||
# learn from the dreams
|
||||
|
||||
actor_loss, critic_loss = world_model.learn_from_experience(dreams)
|
||||
|
||||
(actor_loss + critic_loss).backward()
|
||||
|
||||
# learn from environment
|
||||
|
||||
from dreamer4.mocks import MockEnv
|
||||
|
||||
mock_env = MockEnv((256, 256), vectorized = True, num_envs = 4)
|
||||
|
||||
experience = world_model.interact_with_env(mock_env, max_timesteps = 8, env_is_vectorized = True)
|
||||
|
||||
actor_loss, critic_loss = world_model.learn_from_experience(experience)
|
||||
|
||||
(actor_loss + critic_loss).backward()
|
||||
```
|
||||
|
||||
## Citation
|
||||
|
||||
```bibtex
|
||||
@ -17,3 +108,5 @@ Implementation of Danijar's [latest iteration](https://arxiv.org/abs/2509.24527v
|
||||
url = {https://arxiv.org/abs/2509.24527},
|
||||
}
|
||||
```
|
||||
|
||||
*the conquest of nature is to be achieved through number and measure - angels to Descartes in a dream*
|
||||
|
||||
@ -1,6 +1,7 @@
|
||||
from dreamer4.dreamer4 import (
|
||||
VideoTokenizer,
|
||||
DynamicsWorldModel
|
||||
DynamicsWorldModel,
|
||||
AxialSpaceTimeTransformer
|
||||
)
|
||||
|
||||
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@ -528,7 +528,7 @@ class SimTrainer(Module):
|
||||
|
||||
total_experience += num_experience
|
||||
|
||||
experiences.append(experience)
|
||||
experiences.append(experience.cpu())
|
||||
|
||||
combined_experiences = combine_experiences(experiences)
|
||||
|
||||
|
||||
@ -1,6 +1,6 @@
|
||||
[project]
|
||||
name = "dreamer4"
|
||||
version = "0.0.102"
|
||||
version = "0.1.24"
|
||||
description = "Dreamer 4"
|
||||
authors = [
|
||||
{ name = "Phil Wang", email = "lucidrains@gmail.com" }
|
||||
@ -36,7 +36,8 @@ dependencies = [
|
||||
"hyper-connections>=0.2.1",
|
||||
"torch>=2.4",
|
||||
"torchvision",
|
||||
"x-mlps-pytorch>=0.0.29"
|
||||
"x-mlps-pytorch>=0.0.29",
|
||||
"vit-pytorch>=1.15.3"
|
||||
]
|
||||
|
||||
[project.urls]
|
||||
|
||||
@ -15,7 +15,8 @@ def exists(v):
|
||||
@param('condition_on_actions', (False, True))
|
||||
@param('num_residual_streams', (1, 4))
|
||||
@param('add_reward_embed_to_agent_token', (False, True))
|
||||
@param('use_time_kv_cache', (False, True))
|
||||
@param('add_state_pred_head', (False, True))
|
||||
@param('use_time_cache', (False, True))
|
||||
@param('var_len', (False, True))
|
||||
def test_e2e(
|
||||
pred_orig_latent,
|
||||
@ -28,7 +29,8 @@ def test_e2e(
|
||||
condition_on_actions,
|
||||
num_residual_streams,
|
||||
add_reward_embed_to_agent_token,
|
||||
use_time_kv_cache,
|
||||
add_state_pred_head,
|
||||
use_time_cache,
|
||||
var_len
|
||||
):
|
||||
from dreamer4.dreamer4 import VideoTokenizer, DynamicsWorldModel
|
||||
@ -41,7 +43,9 @@ def test_e2e(
|
||||
patch_size = 32,
|
||||
attn_dim_head = 16,
|
||||
num_latent_tokens = 4,
|
||||
num_residual_streams = num_residual_streams
|
||||
num_residual_streams = num_residual_streams,
|
||||
encoder_add_decor_aux_loss = True,
|
||||
decorr_sample_frac = 1.
|
||||
)
|
||||
|
||||
video = torch.randn(2, 3, 4, 256, 256)
|
||||
@ -69,12 +73,13 @@ def test_e2e(
|
||||
pred_orig_latent = pred_orig_latent,
|
||||
num_discrete_actions = 4,
|
||||
attn_dim_head = 16,
|
||||
attn_heads = heads,
|
||||
attn_kwargs = dict(
|
||||
heads = heads,
|
||||
query_heads = query_heads,
|
||||
),
|
||||
prob_no_shortcut_train = prob_no_shortcut_train,
|
||||
add_reward_embed_to_agent_token = add_reward_embed_to_agent_token,
|
||||
add_state_pred_head = add_state_pred_head,
|
||||
num_residual_streams = num_residual_streams
|
||||
)
|
||||
|
||||
@ -121,7 +126,7 @@ def test_e2e(
|
||||
image_width = 128,
|
||||
batch_size = 2,
|
||||
return_rewards_per_frame = True,
|
||||
use_time_kv_cache = use_time_kv_cache
|
||||
use_time_cache = use_time_cache
|
||||
)
|
||||
|
||||
assert generations.video.shape == (2, 3, 10, 128, 128)
|
||||
@ -615,9 +620,9 @@ def test_cache_generate():
|
||||
num_residual_streams = 1
|
||||
)
|
||||
|
||||
generated, time_kv_cache = dynamics.generate(1, return_time_kv_cache = True)
|
||||
generated, time_kv_cache = dynamics.generate(1, time_kv_cache = time_kv_cache, return_time_kv_cache = True)
|
||||
generated, time_kv_cache = dynamics.generate(1, time_kv_cache = time_kv_cache, return_time_kv_cache = True)
|
||||
generated, time_cache = dynamics.generate(1, return_time_cache = True)
|
||||
generated, time_cache = dynamics.generate(1, time_cache = time_cache, return_time_cache = True)
|
||||
generated, time_cache = dynamics.generate(1, time_cache = time_cache, return_time_cache = True)
|
||||
|
||||
@param('vectorized', (False, True))
|
||||
@param('use_pmpo', (False, True))
|
||||
@ -641,7 +646,9 @@ def test_online_rl(
|
||||
dim_latent = 16,
|
||||
patch_size = 32,
|
||||
attn_dim_head = 16,
|
||||
num_latent_tokens = 1
|
||||
num_latent_tokens = 1,
|
||||
image_height = 256,
|
||||
image_width = 256,
|
||||
)
|
||||
|
||||
world_model_and_policy = DynamicsWorldModel(
|
||||
@ -675,10 +682,18 @@ def test_online_rl(
|
||||
|
||||
# manually
|
||||
|
||||
dream_experience = world_model_and_policy.generate(10, batch_size = 1, store_agent_embed = store_agent_embed, return_for_policy_optimization = True)
|
||||
|
||||
one_experience = world_model_and_policy.interact_with_env(mock_env, max_timesteps = 8, env_is_vectorized = vectorized, store_agent_embed = store_agent_embed)
|
||||
another_experience = world_model_and_policy.interact_with_env(mock_env, max_timesteps = 16, env_is_vectorized = vectorized, store_agent_embed = store_agent_embed)
|
||||
|
||||
combined_experience = combine_experiences([one_experience, another_experience])
|
||||
combined_experience = combine_experiences([dream_experience, one_experience, another_experience])
|
||||
|
||||
# quick test moving the experience to different devices
|
||||
|
||||
if torch.cuda.is_available():
|
||||
combined_experience = combined_experience.to(torch.device('cuda'))
|
||||
combined_experience = combined_experience.to(world_model_and_policy.device)
|
||||
|
||||
if store_agent_embed:
|
||||
assert exists(combined_experience.agent_embed)
|
||||
@ -795,3 +810,22 @@ def test_epo():
|
||||
|
||||
fitness = torch.randn(16,)
|
||||
dynamics.evolve_(fitness)
|
||||
|
||||
def test_images_to_video_tokenizer():
|
||||
import torch
|
||||
from dreamer4 import VideoTokenizer, DynamicsWorldModel, AxialSpaceTimeTransformer
|
||||
|
||||
tokenizer = VideoTokenizer(
|
||||
dim = 512,
|
||||
dim_latent = 32,
|
||||
patch_size = 32,
|
||||
image_height = 256,
|
||||
image_width = 256,
|
||||
encoder_add_decor_aux_loss = True
|
||||
)
|
||||
|
||||
images = torch.randn(2, 3, 256, 256)
|
||||
loss, (losses, recon_images) = tokenizer(images, return_intermediates = True)
|
||||
loss.backward()
|
||||
|
||||
assert images.shape == recon_images.shape
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user