dreamerv3-torch/envs/memorymaze.py

87 lines
2.5 KiB
Python
Raw Normal View History

2023-06-13 09:58:03 +08:00
import atexit
import os
import sys
import cloudpickle
import gym
import numpy as np
2023-06-17 23:29:53 +08:00
###from tf dreamerv2 code
2023-06-13 09:58:03 +08:00
2023-06-18 16:57:05 +09:00
class MemoryMaze:
def __init__(self, env, obs_key="image", act_key="action", size=(64, 64)):
self._env = env
self._obs_is_dict = hasattr(self._env.observation_space, "spaces")
self._act_is_dict = hasattr(self._env.action_space, "spaces")
self._obs_key = obs_key
self._act_key = act_key
self._size = size
self._gray = False
2023-06-13 09:58:03 +08:00
2023-06-18 16:57:05 +09:00
def __getattr__(self, name):
if name.startswith("__"):
raise AttributeError(name)
try:
return getattr(self._env, name)
except AttributeError:
raise ValueError(name)
2023-06-13 09:58:03 +08:00
2023-06-18 16:57:05 +09:00
@property
def obs_space(self):
if self._obs_is_dict:
spaces = self._env.observation_space.spaces.copy()
else:
spaces = {self._obs_key: self._env.observation_space}
return {
**spaces,
"reward": gym.spaces.Box(-np.inf, np.inf, (), dtype=np.float32),
"is_first": gym.spaces.Box(0, 1, (), dtype=np.bool),
"is_last": gym.spaces.Box(0, 1, (), dtype=np.bool),
"is_terminal": gym.spaces.Box(0, 1, (), dtype=np.bool),
}
2023-06-13 09:58:03 +08:00
2023-06-18 16:57:05 +09:00
@property
def act_space(self):
if self._act_is_dict:
return self._env.action_space.spaces.copy()
else:
return {self._act_key: self._env.action_space}
2023-06-13 21:39:04 +08:00
2023-06-18 16:57:05 +09:00
@property
def observation_space(self):
img_shape = self._size + ((1,) if self._gray else (3,))
return gym.spaces.Dict(
{
"image": gym.spaces.Box(0, 255, img_shape, np.uint8),
}
)
2023-06-13 21:39:04 +08:00
2023-06-18 16:57:05 +09:00
@property
def action_space(self):
space = self._env.action_space
space.discrete = True
return space
2023-06-13 09:58:03 +08:00
2023-06-18 16:57:05 +09:00
def step(self, action):
# if not self._act_is_dict:
# action = action[self._act_key]
obs, reward, done, info = self._env.step(action)
if not self._obs_is_dict:
obs = {self._obs_key: obs}
# obs['reward'] = float(reward)
obs["is_first"] = False
obs["is_last"] = done
obs["is_terminal"] = info.get("is_terminal", False)
return obs, reward, done, info
2023-06-13 09:58:03 +08:00
2023-06-18 16:57:05 +09:00
def reset(self):
obs = self._env.reset()
if not self._obs_is_dict:
obs = {self._obs_key: obs}
obs["reward"] = 0.0
obs["is_first"] = True
obs["is_last"] = False
obs["is_terminal"] = False
return obs