cleaned up envs
This commit is contained in:
parent
fba87a33e0
commit
1e070a3daf
10
configs.yaml
10
configs.yaml
@ -122,16 +122,22 @@ defaults:
|
||||
|
||||
visual_dmc:
|
||||
|
||||
atari:
|
||||
atari100k:
|
||||
steps: 4e5
|
||||
action_repeat: 4
|
||||
eval_episode_num: 100
|
||||
stickey: False
|
||||
lives: unused
|
||||
noops: 30
|
||||
resize: opencv
|
||||
actions: needed
|
||||
actor_dist: 'onehot'
|
||||
train_ratio: 1024
|
||||
imag_gradient: 'reinforce'
|
||||
time_limit: 108000
|
||||
precision: 32
|
||||
|
||||
debug:
|
||||
|
||||
debug: True
|
||||
pretrain: 1
|
||||
prefill: 1
|
||||
|
26
dreamer.py
26
dreamer.py
@ -16,7 +16,7 @@ sys.path.append(str(pathlib.Path(__file__).parent))
|
||||
import exploration as expl
|
||||
import models
|
||||
import tools
|
||||
import wrappers
|
||||
import envs.wrappers as wrappers
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
@ -189,21 +189,29 @@ def make_dataset(episodes, config):
|
||||
def make_env(config, logger, mode, train_eps, eval_eps):
|
||||
suite, task = config.task.split("_", 1)
|
||||
if suite == "dmc":
|
||||
env = wrappers.DeepMindControl(task, config.action_repeat, config.size)
|
||||
import envs.dmc as dmc
|
||||
|
||||
env = dmc.DeepMindControl(task, config.action_repeat, config.size)
|
||||
env = wrappers.NormalizeActions(env)
|
||||
elif suite == "atari":
|
||||
env = wrappers.Atari(
|
||||
import envs.atari as atari
|
||||
|
||||
env = atari.Atari(
|
||||
task,
|
||||
config.action_repeat,
|
||||
config.size,
|
||||
grayscale=config.grayscale,
|
||||
life_done=False and ("train" in mode),
|
||||
sticky_actions=False,
|
||||
all_actions=False,
|
||||
gray=config.grayscale,
|
||||
noops=config.noops,
|
||||
lives=config.lives,
|
||||
sticky=config.stickey,
|
||||
actions=config.actions,
|
||||
resize=config.resize,
|
||||
)
|
||||
env = wrappers.OneHotAction(env)
|
||||
elif suite == "dmlab":
|
||||
env = wrappers.DeepMindLabyrinth(
|
||||
import envs.dmlab as dmlab
|
||||
|
||||
env = dmlab.DeepMindLabyrinth(
|
||||
task, mode if "train" in mode else "test", config.action_repeat
|
||||
)
|
||||
env = wrappers.OneHotAction(env)
|
||||
@ -326,7 +334,7 @@ def main(config):
|
||||
print(f"Prefill dataset ({prefill} steps).")
|
||||
if hasattr(acts, "discrete"):
|
||||
random_actor = tools.OneHotDist(
|
||||
torch.zeros_like(torch.Tensor(acts.low)).repeat(config.envs, 1)
|
||||
torch.zeros(config.num_actions).repeat(config.envs, 1)
|
||||
)
|
||||
else:
|
||||
random_actor = torchd.independent.Independent(
|
||||
|
128
envs/atari.py
Normal file
128
envs/atari.py
Normal file
@ -0,0 +1,128 @@
|
||||
import numpy as np
|
||||
|
||||
|
||||
class Atari:
|
||||
|
||||
LOCK = None
|
||||
|
||||
def __init__(
|
||||
self, name, action_repeat=4, size=(84, 84), gray=True, noops=0, lives='unused',
|
||||
sticky=True, actions='all', length=108000, resize='opencv', seed=None):
|
||||
assert size[0] == size[1]
|
||||
assert lives in ('unused', 'discount', 'reset'), lives
|
||||
assert actions in ('all', 'needed'), actions
|
||||
assert resize in ('opencv', 'pillow'), resize
|
||||
if self.LOCK is None:
|
||||
import multiprocessing as mp
|
||||
mp = mp.get_context('spawn')
|
||||
self.LOCK = mp.Lock()
|
||||
self._resize = resize
|
||||
if self._resize == 'opencv':
|
||||
import cv2
|
||||
self._cv2 = cv2
|
||||
if self._resize == 'pillow':
|
||||
from PIL import Image
|
||||
self._image = Image
|
||||
import gym.envs.atari
|
||||
if name == 'james_bond':
|
||||
name = 'jamesbond'
|
||||
self._repeat = action_repeat
|
||||
self._size = size
|
||||
self._gray = gray
|
||||
self._noops = noops
|
||||
self._lives = lives
|
||||
self._sticky = sticky
|
||||
self._length = length
|
||||
self._random = np.random.RandomState(seed)
|
||||
with self.LOCK:
|
||||
self._env = gym.envs.atari.AtariEnv(
|
||||
game=name,
|
||||
obs_type='image',
|
||||
frameskip=1, repeat_action_probability=0.25 if sticky else 0.0,
|
||||
full_action_space=(actions == 'all'))
|
||||
assert self._env.unwrapped.get_action_meanings()[0] == 'NOOP'
|
||||
shape = self._env.observation_space.shape
|
||||
self._buffer = [np.zeros(shape, np.uint8) for _ in range(2)]
|
||||
self._ale = self._env.unwrapped.ale
|
||||
self._last_lives = None
|
||||
self._done = True
|
||||
self._step = 0
|
||||
|
||||
@property
|
||||
def action_space(self):
|
||||
space = self._env.action_space
|
||||
space.discrete = True
|
||||
return space
|
||||
|
||||
def step(self, action):
|
||||
# if action['reset'] or self._done:
|
||||
# with self.LOCK:
|
||||
# self._reset()
|
||||
# self._done = False
|
||||
# self._step = 0
|
||||
# return self._obs(0.0, is_first=True)
|
||||
total = 0.0
|
||||
dead = False
|
||||
if len(action.shape) >= 1:
|
||||
action = np.argmax(action)
|
||||
for repeat in range(self._repeat):
|
||||
_, reward, over, info = self._env.step(action)
|
||||
self._step += 1
|
||||
total += reward
|
||||
if repeat == self._repeat - 2:
|
||||
self._screen(self._buffer[1])
|
||||
if over:
|
||||
break
|
||||
if self._lives != 'unused':
|
||||
current = self._ale.lives()
|
||||
if current < self._last_lives:
|
||||
dead = True
|
||||
self._last_lives = current
|
||||
break
|
||||
if not self._repeat:
|
||||
self._buffer[1][:] = self._buffer[0][:]
|
||||
self._screen(self._buffer[0])
|
||||
self._done = over or (self._length and self._step >= self._length) or dead
|
||||
return self._obs(
|
||||
total,
|
||||
is_last=self._done or (dead and self._lives == 'reset'),
|
||||
is_terminal=dead or over)
|
||||
|
||||
def reset(self):
|
||||
self._env.reset()
|
||||
if self._noops:
|
||||
for _ in range(self._random.randint(self._noops)):
|
||||
_, _, dead, _ = self._env.step(0)
|
||||
if dead:
|
||||
self._env.reset()
|
||||
self._last_lives = self._ale.lives()
|
||||
self._screen(self._buffer[0])
|
||||
self._buffer[1].fill(0)
|
||||
|
||||
self._done = False
|
||||
self._step = 0
|
||||
obs, reward, is_terminal, _ = self._obs(0.0, is_first=True)
|
||||
return obs
|
||||
|
||||
def _obs(self, reward, is_first=False, is_last=False, is_terminal=False):
|
||||
np.maximum(self._buffer[0], self._buffer[1], out=self._buffer[0])
|
||||
image = self._buffer[0]
|
||||
if image.shape[:2] != self._size:
|
||||
if self._resize == 'opencv':
|
||||
image = self._cv2.resize(
|
||||
image, self._size, interpolation=self._cv2.INTER_AREA)
|
||||
if self._resize == 'pillow':
|
||||
image = self._image.fromarray(image)
|
||||
image = image.resize(self._size, self._image.NEAREST)
|
||||
image = np.array(image)
|
||||
if self._gray:
|
||||
weights = [0.299, 0.587, 1 - (0.299 + 0.587)]
|
||||
image = np.tensordot(image, weights, (-1, 0)).astype(image.dtype)
|
||||
image = image[:, :, None]
|
||||
return {'image':image, 'is_terminal':is_terminal}, reward, is_last, {}
|
||||
|
||||
def _screen(self, array):
|
||||
self._ale.getScreenRGB2(array)
|
||||
|
||||
def close(self):
|
||||
return self._env.close()
|
64
envs/dmc.py
Normal file
64
envs/dmc.py
Normal file
@ -0,0 +1,64 @@
|
||||
import gym
|
||||
import numpy as np
|
||||
|
||||
|
||||
class DeepMindControl:
|
||||
|
||||
def __init__(self, name, action_repeat=1, size=(64, 64), camera=None):
|
||||
domain, task = name.split('_', 1)
|
||||
if domain == 'cup': # Only domain with multiple words.
|
||||
domain = 'ball_in_cup'
|
||||
if isinstance(domain, str):
|
||||
from dm_control import suite
|
||||
self._env = suite.load(domain, task)
|
||||
else:
|
||||
assert task is None
|
||||
self._env = domain()
|
||||
self._action_repeat = action_repeat
|
||||
self._size = size
|
||||
if camera is None:
|
||||
camera = dict(quadruped=2).get(domain, 0)
|
||||
self._camera = camera
|
||||
|
||||
@property
|
||||
def observation_space(self):
|
||||
spaces = {}
|
||||
for key, value in self._env.observation_spec().items():
|
||||
spaces[key] = gym.spaces.Box(
|
||||
-np.inf, np.inf, value.shape, dtype=np.float32)
|
||||
spaces['image'] = gym.spaces.Box(
|
||||
0, 255, self._size + (3,), dtype=np.uint8)
|
||||
return gym.spaces.Dict(spaces)
|
||||
|
||||
@property
|
||||
def action_space(self):
|
||||
spec = self._env.action_spec()
|
||||
return gym.spaces.Box(spec.minimum, spec.maximum, dtype=np.float32)
|
||||
|
||||
def step(self, action):
|
||||
assert np.isfinite(action).all(), action
|
||||
reward = 0
|
||||
for _ in range(self._action_repeat):
|
||||
time_step = self._env.step(action)
|
||||
reward += time_step.reward or 0
|
||||
if time_step.last():
|
||||
break
|
||||
obs = dict(time_step.observation)
|
||||
obs['image'] = self.render()
|
||||
# There is no terminal state in DMC
|
||||
obs['is_terminal'] = False
|
||||
done = time_step.last()
|
||||
info = {'discount': np.array(time_step.discount, np.float32)}
|
||||
return obs, reward, done, info
|
||||
|
||||
def reset(self):
|
||||
time_step = self._env.reset()
|
||||
obs = dict(time_step.observation)
|
||||
obs['image'] = self.render()
|
||||
obs['is_terminal'] = False
|
||||
return obs
|
||||
|
||||
def render(self, *args, **kwargs):
|
||||
if kwargs.get('mode', 'rgb_array') != 'rgb_array':
|
||||
raise ValueError("Only render mode 'rgb_array' is supported.")
|
||||
return self._env.physics.render(*self._size, camera_id=self._camera)
|
101
envs/dmlab.py
Normal file
101
envs/dmlab.py
Normal file
@ -0,0 +1,101 @@
|
||||
import gym
|
||||
import numpy as np
|
||||
import deepmind_lab
|
||||
|
||||
|
||||
class DeepMindLabyrinth(object):
|
||||
|
||||
ACTION_SET_DEFAULT = (
|
||||
(0, 0, 0, 1, 0, 0, 0), # Forward
|
||||
(0, 0, 0, -1, 0, 0, 0), # Backward
|
||||
(0, 0, -1, 0, 0, 0, 0), # Strafe Left
|
||||
(0, 0, 1, 0, 0, 0, 0), # Strafe Right
|
||||
(-20, 0, 0, 0, 0, 0, 0), # Look Left
|
||||
(20, 0, 0, 0, 0, 0, 0), # Look Right
|
||||
(-20, 0, 0, 1, 0, 0, 0), # Look Left + Forward
|
||||
(20, 0, 0, 1, 0, 0, 0), # Look Right + Forward
|
||||
(0, 0, 0, 0, 1, 0, 0), # Fire
|
||||
)
|
||||
|
||||
ACTION_SET_MEDIUM = (
|
||||
(0, 0, 0, 1, 0, 0, 0), # Forward
|
||||
(0, 0, 0, -1, 0, 0, 0), # Backward
|
||||
(0, 0, -1, 0, 0, 0, 0), # Strafe Left
|
||||
(0, 0, 1, 0, 0, 0, 0), # Strafe Right
|
||||
(-20, 0, 0, 0, 0, 0, 0), # Look Left
|
||||
(20, 0, 0, 0, 0, 0, 0), # Look Right
|
||||
(0, 0, 0, 0, 0, 0, 0), # Idle.
|
||||
)
|
||||
|
||||
ACTION_SET_SMALL = (
|
||||
(0, 0, 0, 1, 0, 0, 0), # Forward
|
||||
(-20, 0, 0, 0, 0, 0, 0), # Look Left
|
||||
(20, 0, 0, 0, 0, 0, 0), # Look Right
|
||||
)
|
||||
|
||||
def __init__(
|
||||
self, level, mode, action_repeat=4, render_size=(64, 64),
|
||||
action_set=ACTION_SET_DEFAULT, level_cache=None, seed=None,
|
||||
runfiles_path=None):
|
||||
assert mode in ('train', 'test')
|
||||
if runfiles_path:
|
||||
print('Setting DMLab runfiles path:', runfiles_path)
|
||||
deepmind_lab.set_runfiles_path(runfiles_path)
|
||||
self._config = {}
|
||||
self._config['width'] = render_size[0]
|
||||
self._config['height'] = render_size[1]
|
||||
self._config['logLevel'] = 'WARN'
|
||||
if mode == 'test':
|
||||
self._config['allowHoldOutLevels'] = 'true'
|
||||
self._config['mixerSeed'] = 0x600D5EED
|
||||
self._action_repeat = action_repeat
|
||||
self._random = np.random.RandomState(seed)
|
||||
self._env = deepmind_lab.Lab(
|
||||
level='contributed/dmlab30/'+level,
|
||||
observations=['RGB_INTERLEAVED'],
|
||||
config={k: str(v) for k, v in self._config.items()},
|
||||
level_cache=level_cache)
|
||||
self._action_set = action_set
|
||||
self._last_image = None
|
||||
self._done = True
|
||||
|
||||
@property
|
||||
def observation_space(self):
|
||||
shape = (self._config['height'], self._config['width'], 3)
|
||||
space = gym.spaces.Box(low=0, high=255, shape=shape, dtype=np.uint8)
|
||||
return gym.spaces.Dict({'image': space})
|
||||
|
||||
@property
|
||||
def action_space(self):
|
||||
return gym.spaces.Discrete(len(self._action_set))
|
||||
|
||||
def reset(self):
|
||||
self._done = False
|
||||
self._env.reset(seed=self._random.randint(0, 2 ** 31 - 1))
|
||||
obs = self._get_obs()
|
||||
return obs
|
||||
|
||||
def step(self, action):
|
||||
raw_action = np.array(self._action_set[action], np.intc)
|
||||
reward = self._env.step(raw_action, num_steps=self._action_repeat)
|
||||
self._done = not self._env.is_running()
|
||||
obs = self._get_obs()
|
||||
return obs, reward, self._done, {}
|
||||
|
||||
def render(self, *args, **kwargs):
|
||||
if kwargs.get('mode', 'rgb_array') != 'rgb_array':
|
||||
raise ValueError("Only render mode 'rgb_array' is supported.")
|
||||
del args # Unused
|
||||
del kwargs # Unused
|
||||
return self._last_image
|
||||
|
||||
def close(self):
|
||||
self._env.close()
|
||||
|
||||
def _get_obs(self):
|
||||
if self._done:
|
||||
image = 0 * self._last_image
|
||||
else:
|
||||
image = self._env.observations()['RGB_INTERLEAVED']
|
||||
self._last_image = image
|
||||
return {'image': image}
|
188
envs/wrappers.py
Normal file
188
envs/wrappers.py
Normal file
@ -0,0 +1,188 @@
|
||||
import gym
|
||||
import numpy as np
|
||||
|
||||
|
||||
class CollectDataset:
|
||||
|
||||
def __init__(self, env, callbacks=None, precision=32):
|
||||
self._env = env
|
||||
self._callbacks = callbacks or ()
|
||||
self._precision = precision
|
||||
self._episode = None
|
||||
|
||||
def __getattr__(self, name):
|
||||
return getattr(self._env, name)
|
||||
|
||||
def step(self, action):
|
||||
obs, reward, done, info = self._env.step(action)
|
||||
obs = {k: self._convert(v) for k, v in obs.items()}
|
||||
transition = obs.copy()
|
||||
if isinstance(action, dict):
|
||||
transition.update(action)
|
||||
else:
|
||||
transition['action'] = action
|
||||
transition['reward'] = reward
|
||||
transition['discount'] = info.get('discount', np.array(1 - float(done)))
|
||||
self._episode.append(transition)
|
||||
if done:
|
||||
for key, value in self._episode[1].items():
|
||||
if key not in self._episode[0]:
|
||||
self._episode[0][key] = 0 * value
|
||||
episode = {k: [t[k] for t in self._episode] for k in self._episode[0]}
|
||||
episode = {k: self._convert(v) for k, v in episode.items()}
|
||||
info['episode'] = episode
|
||||
for callback in self._callbacks:
|
||||
callback(episode)
|
||||
return obs, reward, done, info
|
||||
|
||||
def reset(self):
|
||||
obs = self._env.reset()
|
||||
transition = obs.copy()
|
||||
# Missing keys will be filled with a zeroed out version of the first
|
||||
# transition, because we do not know what action information the agent will
|
||||
# pass yet.
|
||||
transition['reward'] = 0.0
|
||||
transition['discount'] = 1.0
|
||||
self._episode = [transition]
|
||||
return obs
|
||||
|
||||
def _convert(self, value):
|
||||
value = np.array(value)
|
||||
if np.issubdtype(value.dtype, np.floating):
|
||||
dtype = {16: np.float16, 32: np.float32, 64: np.float64}[self._precision]
|
||||
elif np.issubdtype(value.dtype, np.signedinteger):
|
||||
dtype = {16: np.int16, 32: np.int32, 64: np.int64}[self._precision]
|
||||
elif np.issubdtype(value.dtype, np.uint8):
|
||||
dtype = np.uint8
|
||||
elif np.issubdtype(value.dtype, np.bool):
|
||||
dtype = np.bool
|
||||
else:
|
||||
raise NotImplementedError(value.dtype)
|
||||
return value.astype(dtype)
|
||||
|
||||
|
||||
class TimeLimit:
|
||||
|
||||
def __init__(self, env, duration):
|
||||
self._env = env
|
||||
self._duration = duration
|
||||
self._step = None
|
||||
|
||||
def __getattr__(self, name):
|
||||
return getattr(self._env, name)
|
||||
|
||||
def step(self, action):
|
||||
assert self._step is not None, 'Must reset environment.'
|
||||
obs, reward, done, info = self._env.step(action)
|
||||
self._step += 1
|
||||
if self._step >= self._duration:
|
||||
done = True
|
||||
if 'discount' not in info:
|
||||
info['discount'] = np.array(1.0).astype(np.float32)
|
||||
self._step = None
|
||||
return obs, reward, done, info
|
||||
|
||||
def reset(self):
|
||||
self._step = 0
|
||||
return self._env.reset()
|
||||
|
||||
|
||||
class NormalizeActions:
|
||||
|
||||
def __init__(self, env):
|
||||
self._env = env
|
||||
self._mask = np.logical_and(
|
||||
np.isfinite(env.action_space.low),
|
||||
np.isfinite(env.action_space.high))
|
||||
self._low = np.where(self._mask, env.action_space.low, -1)
|
||||
self._high = np.where(self._mask, env.action_space.high, 1)
|
||||
|
||||
def __getattr__(self, name):
|
||||
return getattr(self._env, name)
|
||||
|
||||
@property
|
||||
def action_space(self):
|
||||
low = np.where(self._mask, -np.ones_like(self._low), self._low)
|
||||
high = np.where(self._mask, np.ones_like(self._low), self._high)
|
||||
return gym.spaces.Box(low, high, dtype=np.float32)
|
||||
|
||||
def step(self, action):
|
||||
original = (action + 1) / 2 * (self._high - self._low) + self._low
|
||||
original = np.where(self._mask, original, action)
|
||||
return self._env.step(original)
|
||||
|
||||
|
||||
class OneHotAction:
|
||||
|
||||
def __init__(self, env):
|
||||
assert isinstance(env.action_space, gym.spaces.Discrete)
|
||||
self._env = env
|
||||
self._random = np.random.RandomState()
|
||||
|
||||
def __getattr__(self, name):
|
||||
return getattr(self._env, name)
|
||||
|
||||
@property
|
||||
def action_space(self):
|
||||
shape = (self._env.action_space.n,)
|
||||
space = gym.spaces.Box(low=0, high=1, shape=shape, dtype=np.float32)
|
||||
space.sample = self._sample_action
|
||||
space.discrete = True
|
||||
return space
|
||||
|
||||
def step(self, action):
|
||||
index = np.argmax(action).astype(int)
|
||||
reference = np.zeros_like(action)
|
||||
reference[index] = 1
|
||||
if not np.allclose(reference, action):
|
||||
raise ValueError(f'Invalid one-hot action:\n{action}')
|
||||
return self._env.step(index)
|
||||
|
||||
def reset(self):
|
||||
return self._env.reset()
|
||||
|
||||
def _sample_action(self):
|
||||
actions = self._env.action_space.n
|
||||
index = self._random.randint(0, actions)
|
||||
reference = np.zeros(actions, dtype=np.float32)
|
||||
reference[index] = 1.0
|
||||
return reference
|
||||
|
||||
|
||||
class RewardObs:
|
||||
|
||||
def __init__(self, env):
|
||||
self._env = env
|
||||
|
||||
def __getattr__(self, name):
|
||||
return getattr(self._env, name)
|
||||
|
||||
@property
|
||||
def observation_space(self):
|
||||
spaces = self._env.observation_space.spaces
|
||||
assert 'reward' not in spaces
|
||||
spaces['reward'] = gym.spaces.Box(-np.inf, np.inf, dtype=np.float32)
|
||||
return gym.spaces.Dict(spaces)
|
||||
|
||||
def step(self, action):
|
||||
obs, reward, done, info = self._env.step(action)
|
||||
obs['reward'] = reward
|
||||
return obs, reward, done, info
|
||||
|
||||
def reset(self):
|
||||
obs = self._env.reset()
|
||||
obs['reward'] = 0.0
|
||||
return obs
|
||||
|
||||
|
||||
class SelectAction:
|
||||
|
||||
def __init__(self, env, key):
|
||||
self._env = env
|
||||
self._key = key
|
||||
|
||||
def __getattr__(self, name):
|
||||
return getattr(self._env, name)
|
||||
|
||||
def step(self, action):
|
||||
return self._env.step(action[self._key])
|
@ -5,8 +5,8 @@ tensorboard==2.5.0
|
||||
pandas==1.2.4
|
||||
matplotlib==3.4.1
|
||||
ruamel.yaml==0.17.4
|
||||
gym[atari]==0.17.0
|
||||
moviepy==1.0.3
|
||||
einops==0.3.0
|
||||
protobuf==3.20.0
|
||||
gym==0.19.0
|
||||
dm_control==1.0.9
|
419
wrappers.py
419
wrappers.py
@ -1,419 +0,0 @@
|
||||
import threading
|
||||
|
||||
import gym
|
||||
import numpy as np
|
||||
|
||||
|
||||
class DeepMindLabyrinth(object):
|
||||
ACTION_SET_DEFAULT = (
|
||||
(0, 0, 0, 1, 0, 0, 0), # Forward
|
||||
(0, 0, 0, -1, 0, 0, 0), # Backward
|
||||
(0, 0, -1, 0, 0, 0, 0), # Strafe Left
|
||||
(0, 0, 1, 0, 0, 0, 0), # Strafe Right
|
||||
(-20, 0, 0, 0, 0, 0, 0), # Look Left
|
||||
(20, 0, 0, 0, 0, 0, 0), # Look Right
|
||||
(-20, 0, 0, 1, 0, 0, 0), # Look Left + Forward
|
||||
(20, 0, 0, 1, 0, 0, 0), # Look Right + Forward
|
||||
(0, 0, 0, 0, 1, 0, 0), # Fire
|
||||
)
|
||||
|
||||
ACTION_SET_MEDIUM = (
|
||||
(0, 0, 0, 1, 0, 0, 0), # Forward
|
||||
(0, 0, 0, -1, 0, 0, 0), # Backward
|
||||
(0, 0, -1, 0, 0, 0, 0), # Strafe Left
|
||||
(0, 0, 1, 0, 0, 0, 0), # Strafe Right
|
||||
(-20, 0, 0, 0, 0, 0, 0), # Look Left
|
||||
(20, 0, 0, 0, 0, 0, 0), # Look Right
|
||||
(0, 0, 0, 0, 0, 0, 0), # Idle.
|
||||
)
|
||||
|
||||
ACTION_SET_SMALL = (
|
||||
(0, 0, 0, 1, 0, 0, 0), # Forward
|
||||
(-20, 0, 0, 0, 0, 0, 0), # Look Left
|
||||
(20, 0, 0, 0, 0, 0, 0), # Look Right
|
||||
)
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
level,
|
||||
mode,
|
||||
action_repeat=4,
|
||||
render_size=(64, 64),
|
||||
action_set=ACTION_SET_DEFAULT,
|
||||
level_cache=None,
|
||||
seed=None,
|
||||
runfiles_path=None,
|
||||
):
|
||||
assert mode in ("train", "test")
|
||||
import deepmind_lab
|
||||
|
||||
if runfiles_path:
|
||||
print("Setting DMLab runfiles path:", runfiles_path)
|
||||
deepmind_lab.set_runfiles_path(runfiles_path)
|
||||
self._config = {}
|
||||
self._config["width"] = render_size[0]
|
||||
self._config["height"] = render_size[1]
|
||||
self._config["logLevel"] = "WARN"
|
||||
if mode == "test":
|
||||
self._config["allowHoldOutLevels"] = "true"
|
||||
self._config["mixerSeed"] = 0x600D5EED
|
||||
self._action_repeat = action_repeat
|
||||
self._random = np.random.RandomState(seed)
|
||||
self._env = deepmind_lab.Lab(
|
||||
level="contributed/dmlab30/" + level,
|
||||
observations=["RGB_INTERLEAVED"],
|
||||
config={k: str(v) for k, v in self._config.items()},
|
||||
level_cache=level_cache,
|
||||
)
|
||||
self._action_set = action_set
|
||||
self._last_image = None
|
||||
self._done = True
|
||||
|
||||
@property
|
||||
def observation_space(self):
|
||||
shape = (self._config["height"], self._config["width"], 3)
|
||||
space = gym.spaces.Box(low=0, high=255, shape=shape, dtype=np.uint8)
|
||||
return gym.spaces.Dict({"image": space})
|
||||
|
||||
@property
|
||||
def action_space(self):
|
||||
return gym.spaces.Discrete(len(self._action_set))
|
||||
|
||||
def reset(self):
|
||||
self._done = False
|
||||
self._env.reset(seed=self._random.randint(0, 2**31 - 1))
|
||||
obs = self._get_obs()
|
||||
return obs
|
||||
|
||||
def step(self, action):
|
||||
raw_action = np.array(self._action_set[action], np.intc)
|
||||
reward = self._env.step(raw_action, num_steps=self._action_repeat)
|
||||
self._done = not self._env.is_running()
|
||||
obs = self._get_obs()
|
||||
return obs, reward, self._done, {}
|
||||
|
||||
def render(self, *args, **kwargs):
|
||||
if kwargs.get("mode", "rgb_array") != "rgb_array":
|
||||
raise ValueError("Only render mode 'rgb_array' is supported.")
|
||||
del args # Unused
|
||||
del kwargs # Unused
|
||||
return self._last_image
|
||||
|
||||
def close(self):
|
||||
self._env.close()
|
||||
|
||||
def _get_obs(self):
|
||||
if self._done:
|
||||
image = 0 * self._last_image
|
||||
else:
|
||||
image = self._env.observations()["RGB_INTERLEAVED"]
|
||||
self._last_image = image
|
||||
return {"image": image}
|
||||
|
||||
|
||||
class DeepMindControl:
|
||||
def __init__(self, name, action_repeat=1, size=(64, 64), camera=None):
|
||||
domain, task = name.split("_", 1)
|
||||
if domain == "cup": # Only domain with multiple words.
|
||||
domain = "ball_in_cup"
|
||||
if isinstance(domain, str):
|
||||
from dm_control import suite
|
||||
|
||||
self._env = suite.load(domain, task)
|
||||
else:
|
||||
assert task is None
|
||||
self._env = domain()
|
||||
self._action_repeat = action_repeat
|
||||
self._size = size
|
||||
if camera is None:
|
||||
camera = dict(quadruped=2).get(domain, 0)
|
||||
self._camera = camera
|
||||
|
||||
@property
|
||||
def observation_space(self):
|
||||
spaces = {}
|
||||
for key, value in self._env.observation_spec().items():
|
||||
spaces[key] = gym.spaces.Box(-np.inf, np.inf, value.shape, dtype=np.float32)
|
||||
spaces["image"] = gym.spaces.Box(0, 255, self._size + (3,), dtype=np.uint8)
|
||||
return gym.spaces.Dict(spaces)
|
||||
|
||||
@property
|
||||
def action_space(self):
|
||||
spec = self._env.action_spec()
|
||||
return gym.spaces.Box(spec.minimum, spec.maximum, dtype=np.float32)
|
||||
|
||||
def step(self, action):
|
||||
assert np.isfinite(action).all(), action
|
||||
reward = 0
|
||||
for _ in range(self._action_repeat):
|
||||
time_step = self._env.step(action)
|
||||
reward += time_step.reward or 0
|
||||
if time_step.last():
|
||||
break
|
||||
obs = dict(time_step.observation)
|
||||
obs["image"] = self.render()
|
||||
done = time_step.last()
|
||||
info = {"discount": np.array(time_step.discount, np.float32)}
|
||||
return obs, reward, done, info
|
||||
|
||||
def reset(self):
|
||||
time_step = self._env.reset()
|
||||
obs = dict(time_step.observation)
|
||||
obs["image"] = self.render()
|
||||
return obs
|
||||
|
||||
def render(self, *args, **kwargs):
|
||||
if kwargs.get("mode", "rgb_array") != "rgb_array":
|
||||
raise ValueError("Only render mode 'rgb_array' is supported.")
|
||||
return self._env.physics.render(*self._size, camera_id=self._camera)
|
||||
|
||||
|
||||
class Atari:
|
||||
LOCK = threading.Lock()
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
name,
|
||||
action_repeat=4,
|
||||
size=(84, 84),
|
||||
grayscale=True,
|
||||
noops=30,
|
||||
life_done=False,
|
||||
sticky_actions=True,
|
||||
all_actions=False,
|
||||
):
|
||||
assert size[0] == size[1]
|
||||
import gym.wrappers
|
||||
import gym.envs.atari
|
||||
|
||||
if name == "james_bond":
|
||||
name = "jamesbond"
|
||||
with self.LOCK:
|
||||
env = gym.envs.atari.AtariEnv(
|
||||
game=name,
|
||||
obs_type="image",
|
||||
frameskip=1,
|
||||
repeat_action_probability=0.25 if sticky_actions else 0.0,
|
||||
full_action_space=all_actions,
|
||||
)
|
||||
# Avoid unnecessary rendering in inner env.
|
||||
env._get_obs = lambda: None
|
||||
# Tell wrapper that the inner env has no action repeat.
|
||||
env.spec = gym.envs.registration.EnvSpec("NoFrameskip-v0")
|
||||
env = gym.wrappers.AtariPreprocessing(
|
||||
env, noops, action_repeat, size[0], life_done, grayscale
|
||||
)
|
||||
self._env = env
|
||||
self._grayscale = grayscale
|
||||
|
||||
@property
|
||||
def observation_space(self):
|
||||
return gym.spaces.Dict(
|
||||
{
|
||||
"image": self._env.observation_space,
|
||||
"ram": gym.spaces.Box(0, 255, (128,), np.uint8),
|
||||
}
|
||||
)
|
||||
|
||||
@property
|
||||
def action_space(self):
|
||||
return self._env.action_space
|
||||
|
||||
def close(self):
|
||||
return self._env.close()
|
||||
|
||||
def reset(self):
|
||||
with self.LOCK:
|
||||
image = self._env.reset()
|
||||
if self._grayscale:
|
||||
image = image[..., None]
|
||||
obs = {"image": image, "ram": self._env.env._get_ram()}
|
||||
return obs
|
||||
|
||||
def step(self, action):
|
||||
image, reward, done, info = self._env.step(action)
|
||||
if self._grayscale:
|
||||
image = image[..., None]
|
||||
obs = {"image": image, "ram": self._env.env._get_ram()}
|
||||
return obs, reward, done, info
|
||||
|
||||
def render(self, mode):
|
||||
return self._env.render(mode)
|
||||
|
||||
|
||||
class CollectDataset:
|
||||
def __init__(self, env, callbacks=None, precision=32):
|
||||
self._env = env
|
||||
self._callbacks = callbacks or ()
|
||||
self._precision = precision
|
||||
self._episode = None
|
||||
|
||||
def __getattr__(self, name):
|
||||
return getattr(self._env, name)
|
||||
|
||||
def step(self, action):
|
||||
obs, reward, done, info = self._env.step(action)
|
||||
obs = {k: self._convert(v) for k, v in obs.items()}
|
||||
transition = obs.copy()
|
||||
if isinstance(action, dict):
|
||||
transition.update(action)
|
||||
else:
|
||||
transition["action"] = action
|
||||
transition["reward"] = reward
|
||||
transition["discount"] = info.get("discount", np.array(1 - float(done)))
|
||||
self._episode.append(transition)
|
||||
if done:
|
||||
for key, value in self._episode[1].items():
|
||||
if key not in self._episode[0]:
|
||||
self._episode[0][key] = 0 * value
|
||||
episode = {k: [t[k] for t in self._episode] for k in self._episode[0]}
|
||||
episode = {k: self._convert(v) for k, v in episode.items()}
|
||||
info["episode"] = episode
|
||||
for callback in self._callbacks:
|
||||
callback(episode)
|
||||
return obs, reward, done, info
|
||||
|
||||
def reset(self):
|
||||
obs = self._env.reset()
|
||||
transition = obs.copy()
|
||||
# Missing keys will be filled with a zeroed out version of the first
|
||||
# transition, because we do not know what action information the agent will
|
||||
# pass yet.
|
||||
transition["reward"] = 0.0
|
||||
transition["discount"] = 1.0
|
||||
self._episode = [transition]
|
||||
return obs
|
||||
|
||||
def _convert(self, value):
|
||||
value = np.array(value)
|
||||
if np.issubdtype(value.dtype, np.floating):
|
||||
dtype = {16: np.float16, 32: np.float32, 64: np.float64}[self._precision]
|
||||
elif np.issubdtype(value.dtype, np.signedinteger):
|
||||
dtype = {16: np.int16, 32: np.int32, 64: np.int64}[self._precision]
|
||||
elif np.issubdtype(value.dtype, np.uint8):
|
||||
dtype = np.uint8
|
||||
else:
|
||||
raise NotImplementedError(value.dtype)
|
||||
return value.astype(dtype)
|
||||
|
||||
|
||||
class TimeLimit:
|
||||
def __init__(self, env, duration):
|
||||
self._env = env
|
||||
self._duration = duration
|
||||
self._step = None
|
||||
|
||||
def __getattr__(self, name):
|
||||
return getattr(self._env, name)
|
||||
|
||||
def step(self, action):
|
||||
assert self._step is not None, "Must reset environment."
|
||||
obs, reward, done, info = self._env.step(action)
|
||||
self._step += 1
|
||||
if self._step >= self._duration:
|
||||
done = True
|
||||
if "discount" not in info:
|
||||
info["discount"] = np.array(1.0).astype(np.float32)
|
||||
self._step = None
|
||||
return obs, reward, done, info
|
||||
|
||||
def reset(self):
|
||||
self._step = 0
|
||||
return self._env.reset()
|
||||
|
||||
|
||||
class NormalizeActions:
|
||||
def __init__(self, env):
|
||||
self._env = env
|
||||
self._mask = np.logical_and(
|
||||
np.isfinite(env.action_space.low), np.isfinite(env.action_space.high)
|
||||
)
|
||||
self._low = np.where(self._mask, env.action_space.low, -1)
|
||||
self._high = np.where(self._mask, env.action_space.high, 1)
|
||||
|
||||
def __getattr__(self, name):
|
||||
return getattr(self._env, name)
|
||||
|
||||
@property
|
||||
def action_space(self):
|
||||
low = np.where(self._mask, -np.ones_like(self._low), self._low)
|
||||
high = np.where(self._mask, np.ones_like(self._low), self._high)
|
||||
return gym.spaces.Box(low, high, dtype=np.float32)
|
||||
|
||||
def step(self, action):
|
||||
original = (action + 1) / 2 * (self._high - self._low) + self._low
|
||||
original = np.where(self._mask, original, action)
|
||||
return self._env.step(original)
|
||||
|
||||
|
||||
class OneHotAction:
|
||||
def __init__(self, env):
|
||||
assert isinstance(env.action_space, gym.spaces.Discrete)
|
||||
self._env = env
|
||||
self._random = np.random.RandomState()
|
||||
|
||||
def __getattr__(self, name):
|
||||
return getattr(self._env, name)
|
||||
|
||||
@property
|
||||
def action_space(self):
|
||||
shape = (self._env.action_space.n,)
|
||||
space = gym.spaces.Box(low=0, high=1, shape=shape, dtype=np.float32)
|
||||
space.sample = self._sample_action
|
||||
space.discrete = True
|
||||
return space
|
||||
|
||||
def step(self, action):
|
||||
index = np.argmax(action).astype(int)
|
||||
reference = np.zeros_like(action)
|
||||
reference[index] = 1
|
||||
if not np.allclose(reference, action):
|
||||
raise ValueError(f"Invalid one-hot action:\n{action}")
|
||||
return self._env.step(index)
|
||||
|
||||
def reset(self):
|
||||
return self._env.reset()
|
||||
|
||||
def _sample_action(self):
|
||||
actions = self._env.action_space.n
|
||||
index = self._random.randint(0, actions)
|
||||
reference = np.zeros(actions, dtype=np.float32)
|
||||
reference[index] = 1.0
|
||||
return reference
|
||||
|
||||
|
||||
class RewardObs:
|
||||
def __init__(self, env):
|
||||
self._env = env
|
||||
|
||||
def __getattr__(self, name):
|
||||
return getattr(self._env, name)
|
||||
|
||||
@property
|
||||
def observation_space(self):
|
||||
spaces = self._env.observation_space.spaces
|
||||
assert "reward" not in spaces
|
||||
spaces["reward"] = gym.spaces.Box(-np.inf, np.inf, dtype=np.float32)
|
||||
return gym.spaces.Dict(spaces)
|
||||
|
||||
def step(self, action):
|
||||
obs, reward, done, info = self._env.step(action)
|
||||
obs["reward"] = reward
|
||||
return obs, reward, done, info
|
||||
|
||||
def reset(self):
|
||||
obs = self._env.reset()
|
||||
obs["reward"] = 0.0
|
||||
return obs
|
||||
|
||||
|
||||
class SelectAction:
|
||||
def __init__(self, env, key):
|
||||
self._env = env
|
||||
self._key = key
|
||||
|
||||
def __getattr__(self, name):
|
||||
return getattr(self._env, name)
|
||||
|
||||
def step(self, action):
|
||||
return self._env.step(action[self._key])
|
Loading…
x
Reference in New Issue
Block a user