dreamerv3-torch/dreamer.py
2023-04-15 23:16:43 +09:00

398 lines
15 KiB
Python

import argparse
import collections
import functools
import os
import pathlib
import sys
import warnings
os.environ["MUJOCO_GL"] = "egl"
import numpy as np
import ruamel.yaml as yaml
sys.path.append(str(pathlib.Path(__file__).parent))
import exploration as expl
import models
import tools
import envs.wrappers as wrappers
import torch
from torch import nn
from torch import distributions as torchd
to_np = lambda x: x.detach().cpu().numpy()
class Dreamer(nn.Module):
def __init__(self, config, logger, dataset):
super(Dreamer, self).__init__()
self._config = config
self._logger = logger
self._should_log = tools.Every(config.log_every)
batch_steps = config.batch_size * config.batch_length
self._should_train = tools.Every(batch_steps / config.train_ratio)
self._should_pretrain = tools.Once()
self._should_reset = tools.Every(config.reset_every)
self._should_expl = tools.Until(int(config.expl_until / config.action_repeat))
self._metrics = {}
self._step = count_steps(config.traindir)
self._update_count = 0
# Schedules.
config.actor_entropy = lambda x=config.actor_entropy: tools.schedule(
x, self._step
)
config.actor_state_entropy = (
lambda x=config.actor_state_entropy: tools.schedule(x, self._step)
)
config.imag_gradient_mix = lambda x=config.imag_gradient_mix: tools.schedule(
x, self._step
)
self._dataset = dataset
self._wm = models.WorldModel(self._step, config)
self._task_behavior = models.ImagBehavior(
config, self._wm, config.behavior_stop_grad
)
if config.compile:
self._wm = torch.compile(self._wm)
self._task_behavior = torch.compile(self._task_behavior)
reward = lambda f, s, a: self._wm.heads["reward"](f).mean
self._expl_behavior = dict(
greedy=lambda: self._task_behavior,
random=lambda: expl.Random(config),
plan2explore=lambda: expl.Plan2Explore(config, self._wm, reward),
)[config.expl_behavior]().to(self._config.device)
def __call__(self, obs, reset, state=None, reward=None, training=True):
step = self._step
if self._should_reset(step):
state = None
if state is not None and reset.any():
mask = 1 - reset
for key in state[0].keys():
for i in range(state[0][key].shape[0]):
state[0][key][i] *= mask[i]
for i in range(len(state[1])):
state[1][i] *= mask[i]
if training:
steps = (
self._config.pretrain
if self._should_pretrain()
else self._should_train(step)
)
for _ in range(steps):
self._train(next(self._dataset))
self._update_count += 1
self._metrics["update_count"] = self._update_count
if self._should_log(step):
for name, values in self._metrics.items():
self._logger.scalar(name, float(np.mean(values)))
self._metrics[name] = []
openl = self._wm.video_pred(next(self._dataset))
self._logger.video("train_openl", to_np(openl))
self._logger.write(fps=True)
policy_output, state = self._policy(obs, state, training)
if training:
self._step += len(reset)
self._logger.step = self._config.action_repeat * self._step
return policy_output, state
def _policy(self, obs, state, training):
if state is None:
batch_size = len(obs["image"])
latent = self._wm.dynamics.initial(len(obs["image"]))
action = torch.zeros((batch_size, self._config.num_actions)).to(
self._config.device
)
else:
latent, action = state
embed = self._wm.encoder(self._wm.preprocess(obs))
latent, _ = self._wm.dynamics.obs_step(
latent, action, embed, self._config.collect_dyn_sample
)
if self._config.eval_state_mean:
latent["stoch"] = latent["mean"]
feat = self._wm.dynamics.get_feat(latent)
if not training:
actor = self._task_behavior.actor(feat)
action = actor.mode()
elif self._should_expl(self._step):
actor = self._expl_behavior.actor(feat)
action = actor.sample()
else:
actor = self._task_behavior.actor(feat)
action = actor.sample()
logprob = actor.log_prob(action)
latent = {k: v.detach() for k, v in latent.items()}
action = action.detach()
if self._config.actor_dist == "onehot_gumble":
action = torch.one_hot(
torch.argmax(action, dim=-1), self._config.num_actions
)
action = self._exploration(action, training)
policy_output = {"action": action, "logprob": logprob}
state = (latent, action)
return policy_output, state
def _exploration(self, action, training):
amount = self._config.expl_amount if training else self._config.eval_noise
if amount == 0:
return action
if "onehot" in self._config.actor_dist:
probs = amount / self._config.num_actions + (1 - amount) * action
return tools.OneHotDist(probs=probs).sample()
else:
return torch.clip(torchd.normal.Normal(action, amount).sample(), -1, 1)
raise NotImplementedError(self._config.action_noise)
def _train(self, data):
metrics = {}
post, context, mets = self._wm._train(data)
metrics.update(mets)
start = post
# start['deter'] (16, 64, 512)
if self._config.pred_discount: # Last step could be terminal.
start = {k: v[:-1] for k, v in post.items()}
context = {k: v[:-1] for k, v in context.items()}
reward = lambda f, s, a: self._wm.heads["reward"](
self._wm.dynamics.get_feat(s)
).mode()
metrics.update(self._task_behavior._train(start, reward)[-1])
if self._config.expl_behavior != "greedy":
if self._config.pred_discount:
data = {k: v[:-1] for k, v in data.items()}
mets = self._expl_behavior.train(start, context, data)[-1]
metrics.update({"expl_" + key: value for key, value in mets.items()})
for name, value in metrics.items():
if not name in self._metrics.keys():
self._metrics[name] = [value]
else:
self._metrics[name].append(value)
def count_steps(folder):
return sum(int(str(n).split("-")[-1][:-4]) - 1 for n in folder.glob("*.npz"))
def make_dataset(episodes, config):
generator = tools.sample_episodes(
episodes, config.batch_length, config.oversample_ends
)
dataset = tools.from_generator(generator, config.batch_size)
return dataset
def make_env(config, logger, mode, train_eps, eval_eps):
suite, task = config.task.split("_", 1)
if suite == "dmc":
import envs.dmc as dmc
env = dmc.DeepMindControl(task, config.action_repeat, config.size)
env = wrappers.NormalizeActions(env)
elif suite == "atari":
import envs.atari as atari
env = atari.Atari(
task,
config.action_repeat,
config.size,
gray=config.grayscale,
noops=config.noops,
lives=config.lives,
sticky=config.stickey,
actions=config.actions,
resize=config.resize,
)
env = wrappers.OneHotAction(env)
elif suite == "dmlab":
import envs.dmlab as dmlab
env = dmlab.DeepMindLabyrinth(
task, mode if "train" in mode else "test", config.action_repeat
)
env = wrappers.OneHotAction(env)
else:
raise NotImplementedError(suite)
env = wrappers.TimeLimit(env, config.time_limit)
env = wrappers.SelectAction(env, key="action")
if (mode == "train") or (mode == "eval"):
callbacks = [
functools.partial(
ProcessEpisodeWrap.process_episode,
config,
logger,
mode,
train_eps,
eval_eps,
)
]
env = wrappers.CollectDataset(env, callbacks)
env = wrappers.RewardObs(env)
return env
class ProcessEpisodeWrap:
eval_scores = []
eval_lengths = []
last_step_at_eval = -1
eval_done = False
@classmethod
def process_episode(cls, config, logger, mode, train_eps, eval_eps, episode):
directory = dict(train=config.traindir, eval=config.evaldir)[mode]
cache = dict(train=train_eps, eval=eval_eps)[mode]
# this saved episodes is given as train_eps or eval_eps from next call
filename = tools.save_episodes(directory, [episode])[0]
length = len(episode["reward"]) - 1
score = float(episode["reward"].astype(np.float64).sum())
video = episode["image"]
cache[str(filename)] = episode
if mode == "train":
total = 0
for key, ep in reversed(sorted(cache.items(), key=lambda x: x[0])):
if not config.dataset_size or total <= config.dataset_size - length:
total += len(ep["reward"]) - 1
else:
del cache[key]
logger.scalar("dataset_size", total)
# use dataset_size as log step for a condition of envs > 1
log_step = total * config.action_repeat
elif mode == "eval":
# start saving episodes for evaluation
if cls.last_step_at_eval != logger.step:
# keep only last item
while len(cache) > 1:
# FIFO
cache.popitem()
cls.eval_scores = []
cls.eval_lengths = []
cls.eval_done = False
cls.last_step_at_eval = logger.step
cls.eval_scores.append(score)
cls.eval_lengths.append(length)
# ignore if number of eval episodes exceeds eval_episode_num
if len(cls.eval_scores) < config.eval_episode_num or cls.eval_done:
return
score = sum(cls.eval_scores) / len(cls.eval_scores)
length = sum(cls.eval_lengths) / len(cls.eval_lengths)
episode_num = len(cls.eval_scores)
log_step = logger.step
logger.video(f"{mode}_policy", video[None])
cls.eval_done = True
print(f"{mode.title()} episode has {length} steps and return {score:.1f}.")
logger.scalar(f"{mode}_return", score)
logger.scalar(f"{mode}_length", length)
logger.scalar(
f"{mode}_episodes", len(cache) if mode == "train" else episode_num
)
logger.write(step=log_step)
def main(config):
logdir = pathlib.Path(config.logdir).expanduser()
config.traindir = config.traindir or logdir / "train_eps"
config.evaldir = config.evaldir or logdir / "eval_eps"
config.steps //= config.action_repeat
config.eval_every //= config.action_repeat
config.log_every //= config.action_repeat
config.time_limit //= config.action_repeat
config.act = getattr(torch.nn, config.act)
config.norm = getattr(torch.nn, config.norm)
print("Logdir", logdir)
logdir.mkdir(parents=True, exist_ok=True)
config.traindir.mkdir(parents=True, exist_ok=True)
config.evaldir.mkdir(parents=True, exist_ok=True)
step = count_steps(config.traindir)
logger = tools.Logger(logdir, config.action_repeat * step)
print("Create envs.")
if config.offline_traindir:
directory = config.offline_traindir.format(**vars(config))
else:
directory = config.traindir
train_eps = tools.load_episodes(directory, limit=config.dataset_size)
if config.offline_evaldir:
directory = config.offline_evaldir.format(**vars(config))
else:
directory = config.evaldir
eval_eps = tools.load_episodes(directory, limit=1)
make = lambda mode: make_env(config, logger, mode, train_eps, eval_eps)
train_envs = [make("train") for _ in range(config.envs)]
eval_envs = [make("eval") for _ in range(config.envs)]
acts = train_envs[0].action_space
config.num_actions = acts.n if hasattr(acts, "n") else acts.shape[0]
if not config.offline_traindir:
prefill = max(0, config.prefill - count_steps(config.traindir))
print(f"Prefill dataset ({prefill} steps).")
if hasattr(acts, "discrete"):
random_actor = tools.OneHotDist(
torch.zeros(config.num_actions).repeat(config.envs, 1)
)
else:
random_actor = torchd.independent.Independent(
torchd.uniform.Uniform(
torch.Tensor(acts.low).repeat(config.envs, 1),
torch.Tensor(acts.high).repeat(config.envs, 1),
),
1,
)
def random_agent(o, d, s, r):
action = random_actor.sample()
logprob = random_actor.log_prob(action)
return {"action": action, "logprob": logprob}, None
tools.simulate(random_agent, train_envs, prefill)
logger.step = config.action_repeat * count_steps(config.traindir)
print("Simulate agent.")
train_dataset = make_dataset(train_eps, config)
eval_dataset = make_dataset(eval_eps, config)
agent = Dreamer(config, logger, train_dataset).to(config.device)
agent.requires_grad_(requires_grad=False)
if (logdir / "latest_model.pt").exists():
agent.load_state_dict(torch.load(logdir / "latest_model.pt"))
agent._should_pretrain._once = False
state = None
while agent._step < config.steps:
logger.write()
print("Start evaluation.")
eval_policy = functools.partial(agent, training=False)
tools.simulate(eval_policy, eval_envs, episodes=config.eval_episode_num)
video_pred = agent._wm.video_pred(next(eval_dataset))
logger.video("eval_openl", to_np(video_pred))
print("Start training.")
state = tools.simulate(agent, train_envs, config.eval_every, state=state)
torch.save(agent.state_dict(), logdir / "latest_model.pt")
for env in train_envs + eval_envs:
try:
env.close()
except Exception:
pass
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--configs", nargs="+", required=True)
args, remaining = parser.parse_known_args()
configs = yaml.safe_load(
(pathlib.Path(sys.argv[0]).parent / "configs.yaml").read_text()
)
defaults = {}
for name in args.configs:
defaults.update(configs[name])
parser = argparse.ArgumentParser()
for key, value in sorted(defaults.items(), key=lambda x: x[0]):
arg_type = tools.args_type(value)
parser.add_argument(f"--{key}", type=arg_type, default=arg_type(value))
main(parser.parse_args(remaining))