236 lines
8.3 KiB
Python
236 lines
8.3 KiB
Python
import logging
|
|
import threading
|
|
|
|
import numpy as np
|
|
import gym
|
|
|
|
|
|
class MinecraftBase(gym.Env):
|
|
_LOCK = threading.Lock()
|
|
|
|
def __init__(
|
|
self,
|
|
actions,
|
|
repeat=1,
|
|
size=(64, 64),
|
|
break_speed=100.0,
|
|
gamma=10.0,
|
|
sticky_attack=30,
|
|
sticky_jump=10,
|
|
pitch_limit=(-60, 60),
|
|
logs=True,
|
|
):
|
|
if logs:
|
|
logging.basicConfig(level=logging.DEBUG)
|
|
self._repeat = repeat
|
|
self._size = size
|
|
if break_speed != 1.0:
|
|
sticky_attack = 0
|
|
|
|
# Make env
|
|
with self._LOCK:
|
|
from . import minecraft_minerl
|
|
|
|
self._env = minecraft_minerl.MineRLEnv(size, break_speed, gamma).make()
|
|
self._inventory = {}
|
|
|
|
# Observations
|
|
self._inv_keys = [
|
|
k
|
|
for k in self._flatten(self._env.observation_space.spaces)
|
|
if k.startswith("inventory/")
|
|
if k != "inventory/log2"
|
|
]
|
|
self._step = 0
|
|
self._max_inventory = None
|
|
self._equip_enum = self._env.observation_space["equipped_items"]["mainhand"][
|
|
"type"
|
|
].values.tolist()
|
|
|
|
# Actions
|
|
self._noop_action = minecraft_minerl.NOOP_ACTION
|
|
actions = self._insert_defaults(actions)
|
|
self._action_names = tuple(actions.keys())
|
|
self._action_values = tuple(actions.values())
|
|
message = f"Minecraft action space ({len(self._action_values)}):"
|
|
print(message, ", ".join(self._action_names))
|
|
self._sticky_attack_length = sticky_attack
|
|
self._sticky_attack_counter = 0
|
|
self._sticky_jump_length = sticky_jump
|
|
self._sticky_jump_counter = 0
|
|
self._pitch_limit = pitch_limit
|
|
self._pitch = 0
|
|
|
|
@property
|
|
def observation_space(self):
|
|
return gym.spaces.Dict(
|
|
{
|
|
"image": gym.spaces.Box(0, 255, self._size + (3,), np.uint8),
|
|
"inventory": gym.spaces.Box(
|
|
-np.inf, np.inf, (len(self._inv_keys),), dtype=np.float32
|
|
),
|
|
"inventory_max": gym.spaces.Box(
|
|
-np.inf, np.inf, (len(self._inv_keys),), dtype=np.float32
|
|
),
|
|
"equipped": gym.spaces.Box(
|
|
-np.inf, np.inf, (len(self._equip_enum),), dtype=np.float32
|
|
),
|
|
"reward": gym.spaces.Box(-np.inf, np.inf, (1,), dtype=np.float32),
|
|
"health": gym.spaces.Box(-np.inf, np.inf, (1,), dtype=np.float32),
|
|
"hunger": gym.spaces.Box(-np.inf, np.inf, (1,), dtype=np.float32),
|
|
"breath": gym.spaces.Box(-np.inf, np.inf, (1,), dtype=np.float32),
|
|
"is_first": gym.spaces.Box(-np.inf, np.inf, (1,), dtype=np.uint8),
|
|
"is_last": gym.spaces.Box(-np.inf, np.inf, (1,), dtype=np.uint8),
|
|
"is_terminal": gym.spaces.Box(-np.inf, np.inf, (1,), dtype=np.uint8),
|
|
**{
|
|
f"log_{k}": gym.spaces.Box(-np.inf, np.inf, (1,), dtype=np.int64)
|
|
for k in self._inv_keys
|
|
},
|
|
"log_player_pos": gym.spaces.Box(
|
|
-np.inf, np.inf, (3,), dtype=np.float32
|
|
),
|
|
}
|
|
)
|
|
|
|
@property
|
|
def action_space(self):
|
|
space = gym.spaces.discrete.Discrete(len(self._action_values))
|
|
space.discrete = True
|
|
return space
|
|
|
|
def step(self, action):
|
|
action = action.copy()
|
|
action = self._action_values[action]
|
|
action = self._action(action)
|
|
following = self._noop_action.copy()
|
|
for key in ("attack", "forward", "back", "left", "right"):
|
|
following[key] = action[key]
|
|
for act in [action] + ([following] * (self._repeat - 1)):
|
|
obs, reward, done, info = self._env.step(act)
|
|
if "error" in info:
|
|
done = True
|
|
break
|
|
obs["is_first"] = False
|
|
obs["is_last"] = bool(done)
|
|
obs["is_terminal"] = bool(info.get("is_terminal", done))
|
|
|
|
obs = self._obs(obs)
|
|
self._step += 1
|
|
assert "pov" not in obs, list(obs.keys())
|
|
return obs, reward, done, info
|
|
|
|
@property
|
|
def inventory(self):
|
|
return self._inventory
|
|
|
|
def reset(self):
|
|
# inventory will be added in _obs
|
|
self._inventory = {}
|
|
self._max_inventory = None
|
|
|
|
with self._LOCK:
|
|
obs = self._env.reset()
|
|
obs["is_first"] = True
|
|
obs["is_last"] = False
|
|
obs["is_terminal"] = False
|
|
obs = self._obs(obs)
|
|
|
|
self._step = 0
|
|
self._sticky_attack_counter = 0
|
|
self._sticky_jump_counter = 0
|
|
self._pitch = 0
|
|
return obs
|
|
|
|
def _obs(self, obs):
|
|
obs = self._flatten(obs)
|
|
obs["inventory/log"] += obs.pop("inventory/log2")
|
|
self._inventory = {
|
|
k.split("/", 1)[1]: obs[k] for k in self._inv_keys if k != "inventory/air"
|
|
}
|
|
inventory = np.array([obs[k] for k in self._inv_keys], np.float32)
|
|
if self._max_inventory is None:
|
|
self._max_inventory = inventory
|
|
else:
|
|
self._max_inventory = np.maximum(self._max_inventory, inventory)
|
|
index = self._equip_enum.index(obs["equipped_items/mainhand/type"])
|
|
equipped = np.zeros(len(self._equip_enum), np.float32)
|
|
equipped[index] = 1.0
|
|
player_x = obs["location_stats/xpos"]
|
|
player_y = obs["location_stats/ypos"]
|
|
player_z = obs["location_stats/zpos"]
|
|
obs = {
|
|
"image": obs["pov"],
|
|
"inventory": inventory,
|
|
"inventory_max": self._max_inventory.copy(),
|
|
"equipped": equipped,
|
|
"health": np.float32(obs["life_stats/life"] / 20),
|
|
"hunger": np.float32(obs["life_stats/food"] / 20),
|
|
"breath": np.float32(obs["life_stats/air"] / 300),
|
|
"reward": 0.0,
|
|
"is_first": obs["is_first"],
|
|
"is_last": obs["is_last"],
|
|
"is_terminal": obs["is_terminal"],
|
|
**{f"log_{k}": np.int64(obs[k]) for k in self._inv_keys},
|
|
"log_player_pos": np.array([player_x, player_y, player_z], np.float32),
|
|
}
|
|
for key, value in obs.items():
|
|
space = self.observation_space[key]
|
|
if not isinstance(value, np.ndarray):
|
|
value = np.array(value)
|
|
assert (key, value, value.dtype, value.shape, space)
|
|
return obs
|
|
|
|
def _action(self, action):
|
|
if self._sticky_attack_length:
|
|
if action["attack"]:
|
|
self._sticky_attack_counter = self._sticky_attack_length
|
|
if self._sticky_attack_counter > 0:
|
|
action["attack"] = 1
|
|
action["jump"] = 0
|
|
self._sticky_attack_counter -= 1
|
|
if self._sticky_jump_length:
|
|
if action["jump"]:
|
|
self._sticky_jump_counter = self._sticky_jump_length
|
|
if self._sticky_jump_counter > 0:
|
|
action["jump"] = 1
|
|
action["forward"] = 1
|
|
self._sticky_jump_counter -= 1
|
|
if self._pitch_limit and action["camera"][0]:
|
|
lo, hi = self._pitch_limit
|
|
if not (lo <= self._pitch + action["camera"][0] <= hi):
|
|
action["camera"] = (0, action["camera"][1])
|
|
self._pitch += action["camera"][0]
|
|
return action
|
|
|
|
def _insert_defaults(self, actions):
|
|
actions = {name: action.copy() for name, action in actions.items()}
|
|
for key, default in self._noop_action.items():
|
|
for action in actions.values():
|
|
if key not in action:
|
|
action[key] = default
|
|
return actions
|
|
|
|
def _flatten(self, nest, prefix=None):
|
|
result = {}
|
|
for key, value in nest.items():
|
|
key = prefix + "/" + key if prefix else key
|
|
if isinstance(value, gym.spaces.Dict):
|
|
value = value.spaces
|
|
if isinstance(value, dict):
|
|
result.update(self._flatten(value, key))
|
|
else:
|
|
result[key] = value
|
|
return result
|
|
|
|
def _unflatten(self, flat):
|
|
result = {}
|
|
for key, value in flat.items():
|
|
parts = key.split("/")
|
|
node = result
|
|
for part in parts[:-1]:
|
|
if part not in node:
|
|
node[part] = {}
|
|
node = node[part]
|
|
node[parts[-1]] = value
|
|
return result
|