2023-06-18 17:29:23 +09:00
2023-06-18 17:29:23 +09:00
2023-04-29 07:30:34 +09:00
2023-06-18 17:19:03 +09:00
2023-06-18 16:57:05 +09:00
2023-06-17 15:27:09 +09:00
2023-02-12 22:35:25 +09:00
2023-06-18 00:02:22 +09:00
2023-06-18 00:02:22 +09:00
2023-06-18 17:18:24 +09:00
2023-06-18 17:18:24 +09:00

dreamerv3-torch

Pytorch implementation of Mastering Diverse Domains through World Models. DreamerV3 is a scalable algorithm that outperforms previous approaches across various domains with fixed hyperparameters.

Instructions

Get dependencies:

pip install -r requirements.txt

Train the agent on Walker Walk in DMC Vision:

python3 dreamer.py --configs dmc_vision --task dmc_walker_walk --logdir ./logdir/dmc_walker_walk

Train the agent on Walker Walk in DMC Proprio:

python3 dreamer.py --configs dmc_proprio --task dmc_walker_walk --logdir ./logdir/dmc_walker_walk

Train the agent on Alien in Atari 100K:

python3 dreamer.py --configs atari100k --task atari_alien --logdir ./logdir/atari_alien

Train the agent on Crafter:

python3 dreamer.py --configs crafter --logdir ./logdir/crafter

Monitor results:

tensorboard --logdir ./logdir

Results

DMC Vision

dmcvision

Atari 100k

atari100k

DMC Proprio

dmcproprio

Acknowledgments

This code is heavily inspired by the following works:

Description
No description provided
Readme MIT 2.9 MiB
Languages
Python 98.6%
Dockerfile 0.9%
Shell 0.5%