344 lines
13 KiB
Python
344 lines
13 KiB
Python
import argparse
|
|
import collections
|
|
import functools
|
|
import os
|
|
import pathlib
|
|
import sys
|
|
import warnings
|
|
|
|
os.environ["MUJOCO_GL"] = "egl"
|
|
|
|
import numpy as np
|
|
import ruamel.yaml as yaml
|
|
|
|
sys.path.append(str(pathlib.Path(__file__).parent))
|
|
|
|
import exploration as expl
|
|
import models
|
|
import tools
|
|
import wrappers
|
|
|
|
import torch
|
|
from torch import nn
|
|
from torch import distributions as torchd
|
|
|
|
to_np = lambda x: x.detach().cpu().numpy()
|
|
|
|
|
|
class Dreamer(nn.Module):
|
|
def __init__(self, config, logger, dataset):
|
|
super(Dreamer, self).__init__()
|
|
self._config = config
|
|
self._logger = logger
|
|
self._should_log = tools.Every(config.log_every)
|
|
self._should_train = tools.Every(config.train_every)
|
|
self._should_pretrain = tools.Once()
|
|
self._should_reset = tools.Every(config.reset_every)
|
|
self._should_expl = tools.Until(int(config.expl_until / config.action_repeat))
|
|
self._metrics = {}
|
|
self._step = count_steps(config.traindir)
|
|
# Schedules.
|
|
config.actor_entropy = lambda x=config.actor_entropy: tools.schedule(
|
|
x, self._step
|
|
)
|
|
config.actor_state_entropy = (
|
|
lambda x=config.actor_state_entropy: tools.schedule(x, self._step)
|
|
)
|
|
config.imag_gradient_mix = lambda x=config.imag_gradient_mix: tools.schedule(
|
|
x, self._step
|
|
)
|
|
self._dataset = dataset
|
|
self._wm = models.WorldModel(self._step, config)
|
|
self._task_behavior = models.ImagBehavior(
|
|
config, self._wm, config.behavior_stop_grad
|
|
)
|
|
reward = lambda f, s, a: self._wm.heads["reward"](f).mean
|
|
self._expl_behavior = dict(
|
|
greedy=lambda: self._task_behavior,
|
|
random=lambda: expl.Random(config),
|
|
plan2explore=lambda: expl.Plan2Explore(config, self._wm, reward),
|
|
)[config.expl_behavior]()
|
|
|
|
def __call__(self, obs, reset, state=None, reward=None, training=True):
|
|
step = self._step
|
|
if self._should_reset(step):
|
|
state = None
|
|
if state is not None and reset.any():
|
|
mask = 1 - reset
|
|
for key in state[0].keys():
|
|
for i in range(state[0][key].shape[0]):
|
|
state[0][key][i] *= mask[i]
|
|
for i in range(len(state[1])):
|
|
state[1][i] *= mask[i]
|
|
if training and self._should_train(step):
|
|
steps = (
|
|
self._config.pretrain
|
|
if self._should_pretrain()
|
|
else self._config.train_steps
|
|
)
|
|
for _ in range(steps):
|
|
self._train(next(self._dataset))
|
|
if self._should_log(step):
|
|
for name, values in self._metrics.items():
|
|
self._logger.scalar(name, float(np.mean(values)))
|
|
self._metrics[name] = []
|
|
openl = self._wm.video_pred(next(self._dataset))
|
|
self._logger.video("train_openl", to_np(openl))
|
|
self._logger.write(fps=True)
|
|
|
|
policy_output, state = self._policy(obs, state, training)
|
|
|
|
if training:
|
|
self._step += len(reset)
|
|
self._logger.step = self._config.action_repeat * self._step
|
|
return policy_output, state
|
|
|
|
def _policy(self, obs, state, training):
|
|
if state is None:
|
|
batch_size = len(obs["image"])
|
|
latent = self._wm.dynamics.initial(len(obs["image"]))
|
|
action = torch.zeros((batch_size, self._config.num_actions)).to(
|
|
self._config.device
|
|
)
|
|
else:
|
|
latent, action = state
|
|
embed = self._wm.encoder(self._wm.preprocess(obs))
|
|
latent, _ = self._wm.dynamics.obs_step(
|
|
latent, action, embed, self._config.collect_dyn_sample
|
|
)
|
|
if self._config.eval_state_mean:
|
|
latent["stoch"] = latent["mean"]
|
|
feat = self._wm.dynamics.get_feat(latent)
|
|
if not training:
|
|
actor = self._task_behavior.actor(feat)
|
|
action = actor.mode()
|
|
elif self._should_expl(self._step):
|
|
actor = self._expl_behavior.actor(feat)
|
|
action = actor.sample()
|
|
else:
|
|
actor = self._task_behavior.actor(feat)
|
|
action = actor.sample()
|
|
logprob = actor.log_prob(action)
|
|
latent = {k: v.detach() for k, v in latent.items()}
|
|
action = action.detach()
|
|
if self._config.actor_dist == "onehot_gumble":
|
|
action = torch.one_hot(
|
|
torch.argmax(action, dim=-1), self._config.num_actions
|
|
)
|
|
action = self._exploration(action, training)
|
|
policy_output = {"action": action, "logprob": logprob}
|
|
state = (latent, action)
|
|
return policy_output, state
|
|
|
|
def _exploration(self, action, training):
|
|
amount = self._config.expl_amount if training else self._config.eval_noise
|
|
if amount == 0:
|
|
return action
|
|
if "onehot" in self._config.actor_dist:
|
|
probs = amount / self._config.num_actions + (1 - amount) * action
|
|
return tools.OneHotDist(probs=probs).sample()
|
|
else:
|
|
return torch.clip(torchd.normal.Normal(action, amount).sample(), -1, 1)
|
|
raise NotImplementedError(self._config.action_noise)
|
|
|
|
def _train(self, data):
|
|
metrics = {}
|
|
post, context, mets = self._wm._train(data)
|
|
metrics.update(mets)
|
|
start = post
|
|
if self._config.pred_discount: # Last step could be terminal.
|
|
start = {k: v[:, :-1] for k, v in post.items()}
|
|
context = {k: v[:, :-1] for k, v in context.items()}
|
|
reward = lambda f, s, a: self._wm.heads["reward"](
|
|
self._wm.dynamics.get_feat(s)
|
|
).mode()
|
|
metrics.update(self._task_behavior._train(start, reward)[-1])
|
|
if self._config.expl_behavior != "greedy":
|
|
if self._config.pred_discount:
|
|
data = {k: v[:, :-1] for k, v in data.items()}
|
|
mets = self._expl_behavior.train(start, context, data)[-1]
|
|
metrics.update({"expl_" + key: value for key, value in mets.items()})
|
|
for name, value in metrics.items():
|
|
if not name in self._metrics.keys():
|
|
self._metrics[name] = [value]
|
|
else:
|
|
self._metrics[name].append(value)
|
|
|
|
|
|
def count_steps(folder):
|
|
return sum(int(str(n).split("-")[-1][:-4]) - 1 for n in folder.glob("*.npz"))
|
|
|
|
|
|
def make_dataset(episodes, config):
|
|
generator = tools.sample_episodes(
|
|
episodes, config.batch_length, config.oversample_ends
|
|
)
|
|
dataset = tools.from_generator(generator, config.batch_size)
|
|
return dataset
|
|
|
|
|
|
def make_env(config, logger, mode, train_eps, eval_eps):
|
|
suite, task = config.task.split("_", 1)
|
|
if suite == "dmc":
|
|
env = wrappers.DeepMindControl(task, config.action_repeat, config.size)
|
|
env = wrappers.NormalizeActions(env)
|
|
elif suite == "atari":
|
|
env = wrappers.Atari(
|
|
task,
|
|
config.action_repeat,
|
|
config.size,
|
|
grayscale=config.grayscale,
|
|
life_done=False and ("train" in mode),
|
|
sticky_actions=True,
|
|
all_actions=True,
|
|
)
|
|
env = wrappers.OneHotAction(env)
|
|
elif suite == "dmlab":
|
|
env = wrappers.DeepMindLabyrinth(
|
|
task, mode if "train" in mode else "test", config.action_repeat
|
|
)
|
|
env = wrappers.OneHotAction(env)
|
|
else:
|
|
raise NotImplementedError(suite)
|
|
env = wrappers.TimeLimit(env, config.time_limit)
|
|
env = wrappers.SelectAction(env, key="action")
|
|
if (mode == "train") or (mode == "eval"):
|
|
callbacks = [
|
|
functools.partial(
|
|
process_episode, config, logger, mode, train_eps, eval_eps
|
|
)
|
|
]
|
|
env = wrappers.CollectDataset(env, callbacks)
|
|
env = wrappers.RewardObs(env)
|
|
return env
|
|
|
|
|
|
def process_episode(config, logger, mode, train_eps, eval_eps, episode):
|
|
directory = dict(train=config.traindir, eval=config.evaldir)[mode]
|
|
cache = dict(train=train_eps, eval=eval_eps)[mode]
|
|
filename = tools.save_episodes(directory, [episode])[0]
|
|
length = len(episode["reward"]) - 1
|
|
score = float(episode["reward"].astype(np.float64).sum())
|
|
video = episode["image"]
|
|
if mode == "eval":
|
|
cache.clear()
|
|
if mode == "train" and config.dataset_size:
|
|
total = 0
|
|
for key, ep in reversed(sorted(cache.items(), key=lambda x: x[0])):
|
|
if total <= config.dataset_size - length:
|
|
total += len(ep["reward"]) - 1
|
|
else:
|
|
del cache[key]
|
|
logger.scalar("dataset_size", total + length)
|
|
cache[str(filename)] = episode
|
|
print(f"{mode.title()} episode has {length} steps and return {score:.1f}.")
|
|
logger.scalar(f"{mode}_return", score)
|
|
logger.scalar(f"{mode}_length", length)
|
|
logger.scalar(f"{mode}_episodes", len(cache))
|
|
if mode == "eval" or config.expl_gifs:
|
|
logger.video(f"{mode}_policy", video[None])
|
|
logger.write()
|
|
|
|
|
|
def main(config):
|
|
logdir = pathlib.Path(config.logdir).expanduser()
|
|
config.traindir = config.traindir or logdir / "train_eps"
|
|
config.evaldir = config.evaldir or logdir / "eval_eps"
|
|
config.steps //= config.action_repeat
|
|
config.eval_every //= config.action_repeat
|
|
config.log_every //= config.action_repeat
|
|
config.time_limit //= config.action_repeat
|
|
config.act = getattr(torch.nn, config.act)
|
|
config.norm = getattr(torch.nn, config.norm)
|
|
|
|
print("Logdir", logdir)
|
|
logdir.mkdir(parents=True, exist_ok=True)
|
|
config.traindir.mkdir(parents=True, exist_ok=True)
|
|
config.evaldir.mkdir(parents=True, exist_ok=True)
|
|
step = count_steps(config.traindir)
|
|
logger = tools.Logger(logdir, config.action_repeat * step)
|
|
|
|
print("Create envs.")
|
|
if config.offline_traindir:
|
|
directory = config.offline_traindir.format(**vars(config))
|
|
else:
|
|
directory = config.traindir
|
|
train_eps = tools.load_episodes(directory, limit=config.dataset_size)
|
|
if config.offline_evaldir:
|
|
directory = config.offline_evaldir.format(**vars(config))
|
|
else:
|
|
directory = config.evaldir
|
|
eval_eps = tools.load_episodes(directory, limit=1)
|
|
make = lambda mode: make_env(config, logger, mode, train_eps, eval_eps)
|
|
train_envs = [make("train") for _ in range(config.envs)]
|
|
eval_envs = [make("eval") for _ in range(config.envs)]
|
|
acts = train_envs[0].action_space
|
|
config.num_actions = acts.n if hasattr(acts, "n") else acts.shape[0]
|
|
|
|
if not config.offline_traindir:
|
|
prefill = max(0, config.prefill - count_steps(config.traindir))
|
|
print(f"Prefill dataset ({prefill} steps).")
|
|
if hasattr(acts, "discrete"):
|
|
random_actor = tools.OneHotDist(
|
|
torch.zeros_like(torch.Tensor(acts.low))[None]
|
|
)
|
|
else:
|
|
random_actor = torchd.independent.Independent(
|
|
torchd.uniform.Uniform(
|
|
torch.Tensor(acts.low)[None], torch.Tensor(acts.high)[None]
|
|
),
|
|
1,
|
|
)
|
|
|
|
def random_agent(o, d, s, r):
|
|
action = random_actor.sample()
|
|
logprob = random_actor.log_prob(action)
|
|
return {"action": action, "logprob": logprob}, None
|
|
|
|
tools.simulate(random_agent, train_envs, prefill)
|
|
tools.simulate(random_agent, eval_envs, episodes=1)
|
|
logger.step = config.action_repeat * count_steps(config.traindir)
|
|
|
|
print("Simulate agent.")
|
|
train_dataset = make_dataset(train_eps, config)
|
|
eval_dataset = make_dataset(eval_eps, config)
|
|
agent = Dreamer(config, logger, train_dataset).to(config.device)
|
|
agent.requires_grad_(requires_grad=False)
|
|
if (logdir / "latest_model.pt").exists():
|
|
agent.load_state_dict(torch.load(logdir / "latest_model.pt"))
|
|
agent._should_pretrain._once = False
|
|
|
|
state = None
|
|
while agent._step < config.steps:
|
|
logger.write()
|
|
print("Start evaluation.")
|
|
video_pred = agent._wm.video_pred(next(eval_dataset))
|
|
logger.video("eval_openl", to_np(video_pred))
|
|
eval_policy = functools.partial(agent, training=False)
|
|
tools.simulate(eval_policy, eval_envs, episodes=1)
|
|
print("Start training.")
|
|
state = tools.simulate(agent, train_envs, config.eval_every, state=state)
|
|
torch.save(agent.state_dict(), logdir / "latest_model.pt")
|
|
for env in train_envs + eval_envs:
|
|
try:
|
|
env.close()
|
|
except Exception:
|
|
pass
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--configs", nargs="+", required=True)
|
|
args, remaining = parser.parse_known_args()
|
|
configs = yaml.safe_load(
|
|
(pathlib.Path(sys.argv[0]).parent / "configs.yaml").read_text()
|
|
)
|
|
defaults = {}
|
|
for name in args.configs:
|
|
defaults.update(configs[name])
|
|
parser = argparse.ArgumentParser()
|
|
for key, value in sorted(defaults.items(), key=lambda x: x[0]):
|
|
arg_type = tools.args_type(value)
|
|
parser.add_argument(f"--{key}", type=arg_type, default=arg_type(value))
|
|
main(parser.parse_args(remaining))
|