184 lines
7.2 KiB
Python
Raw Normal View History

import warnings
2020-03-18 21:45:41 +08:00
from copy import deepcopy
from typing import Any, Dict, Optional, Tuple, Union
import numpy as np
import torch
2020-03-18 21:45:41 +08:00
from tianshou.data import Batch, ReplayBuffer
from tianshou.exploration import BaseNoise, GaussianNoise
from tianshou.policy import BasePolicy
2020-03-18 21:45:41 +08:00
class DDPGPolicy(BasePolicy):
"""Implementation of Deep Deterministic Policy Gradient. arXiv:1509.02971.
2020-04-06 19:36:59 +08:00
:param torch.nn.Module actor: the actor network following the rules in
:class:`~tianshou.policy.BasePolicy`. (s -> logits)
:param torch.optim.Optimizer actor_optim: the optimizer for actor network.
:param torch.nn.Module critic: the critic network. (s, a -> Q(s, a))
:param torch.optim.Optimizer critic_optim: the optimizer for critic network.
:param float tau: param for soft update of the target network. Default to 0.005.
:param float gamma: discount factor, in [0, 1]. Default to 0.99.
:param BaseNoise exploration_noise: the exploration noise,
add to the action. Default to ``GaussianNoise(sigma=0.1)``.
2020-04-06 19:36:59 +08:00
:param bool reward_normalization: normalize the reward to Normal(0, 1),
Default to False.
:param int estimation_step: the number of steps to look ahead. Default to 1.
:param bool action_scaling: whether to map actions from range [-1, 1] to range
[action_spaces.low, action_spaces.high]. Default to True.
:param str action_bound_method: method to bound action to range [-1, 1], can be
either "clip" (for simply clipping the action) or empty string for no bounding.
Default to "clip".
:param Optional[gym.Space] action_space: env's action space, mandatory if you want
to use option "action_scaling" or "action_bound_method". Default to None.
:param lr_scheduler: a learning rate scheduler that adjusts the learning rate in
optimizer in each policy.update(). Default to None (no lr_scheduler).
.. seealso::
Please refer to :class:`~tianshou.policy.BasePolicy` for more detailed
explanation.
2020-04-06 19:36:59 +08:00
"""
2020-03-18 21:45:41 +08:00
def __init__(
self,
actor: Optional[torch.nn.Module],
actor_optim: Optional[torch.optim.Optimizer],
critic: Optional[torch.nn.Module],
critic_optim: Optional[torch.optim.Optimizer],
tau: float = 0.005,
gamma: float = 0.99,
exploration_noise: Optional[BaseNoise] = GaussianNoise(sigma=0.1),
reward_normalization: bool = False,
estimation_step: int = 1,
action_scaling: bool = True,
action_bound_method: str = "clip",
**kwargs: Any,
) -> None:
super().__init__(
action_scaling=action_scaling,
action_bound_method=action_bound_method,
**kwargs
)
assert action_bound_method != "tanh", "tanh mapping is not supported" \
"in policies where action is used as input of critic , because" \
"raw action in range (-inf, inf) will cause instability in training"
if actor is not None and actor_optim is not None:
self.actor: torch.nn.Module = actor
self.actor_old = deepcopy(actor)
2020-03-23 17:17:41 +08:00
self.actor_old.eval()
self.actor_optim: torch.optim.Optimizer = actor_optim
if critic is not None and critic_optim is not None:
self.critic: torch.nn.Module = critic
self.critic_old = deepcopy(critic)
2020-03-23 11:34:52 +08:00
self.critic_old.eval()
self.critic_optim: torch.optim.Optimizer = critic_optim
assert 0.0 <= tau <= 1.0, "tau should be in [0, 1]"
self.tau = tau
assert 0.0 <= gamma <= 1.0, "gamma should be in [0, 1]"
2020-03-18 21:45:41 +08:00
self._gamma = gamma
self._noise = exploration_noise
# it is only a little difference to use GaussianNoise
2020-03-18 21:45:41 +08:00
# self.noise = OUNoise()
2020-03-21 15:31:31 +08:00
self._rew_norm = reward_normalization
2020-06-03 13:59:47 +08:00
self._n_step = estimation_step
2020-03-18 21:45:41 +08:00
def set_exp_noise(self, noise: Optional[BaseNoise]) -> None:
"""Set the exploration noise."""
self._noise = noise
2020-03-18 21:45:41 +08:00
def train(self, mode: bool = True) -> "DDPGPolicy":
2020-04-06 19:36:59 +08:00
"""Set the module in training mode, except for the target network."""
self.training = mode
self.actor.train(mode)
self.critic.train(mode)
return self
2020-03-18 21:45:41 +08:00
2020-05-12 11:31:47 +08:00
def sync_weight(self) -> None:
2020-04-06 19:36:59 +08:00
"""Soft-update the weight for the target network."""
self.soft_update(self.actor_old, self.actor, self.tau)
self.soft_update(self.critic_old, self.critic, self.tau)
2020-03-18 21:45:41 +08:00
def _target_q(self, buffer: ReplayBuffer, indices: np.ndarray) -> torch.Tensor:
batch = buffer[indices] # batch.obs_next: s_{t+n}
target_q = self.critic_old(
batch.obs_next,
self(batch, model='actor_old', input='obs_next').act
)
2020-06-03 13:59:47 +08:00
return target_q
def process_fn(
self, batch: Batch, buffer: ReplayBuffer, indices: np.ndarray
) -> Batch:
2020-06-03 13:59:47 +08:00
batch = self.compute_nstep_return(
batch, buffer, indices, self._target_q, self._gamma, self._n_step,
self._rew_norm
)
2020-03-23 17:17:41 +08:00
return batch
def forward(
self,
batch: Batch,
state: Optional[Union[dict, Batch, np.ndarray]] = None,
model: str = "actor",
input: str = "obs",
**kwargs: Any,
) -> Batch:
2020-04-06 19:36:59 +08:00
"""Compute action over the given batch data.
:return: A :class:`~tianshou.data.Batch` which has 2 keys:
* ``act`` the action.
* ``state`` the hidden state.
.. seealso::
2020-04-10 10:47:16 +08:00
Please refer to :meth:`~tianshou.policy.BasePolicy.forward` for
more detailed explanation.
2020-04-06 19:36:59 +08:00
"""
2020-03-18 21:45:41 +08:00
model = getattr(self, model)
obs = batch[input]
actions, hidden = model(obs, state=state, info=batch.info)
return Batch(act=actions, state=hidden)
2020-03-18 21:45:41 +08:00
@staticmethod
def _mse_optimizer(
batch: Batch, critic: torch.nn.Module, optimizer: torch.optim.Optimizer
) -> Tuple[torch.Tensor, torch.Tensor]:
"""A simple wrapper script for updating critic network."""
weight = getattr(batch, "weight", 1.0)
current_q = critic(batch.obs, batch.act).flatten()
target_q = batch.returns.flatten()
td = current_q - target_q
# critic_loss = F.mse_loss(current_q1, target_q)
critic_loss = (td.pow(2) * weight).mean()
optimizer.zero_grad()
2020-03-18 21:45:41 +08:00
critic_loss.backward()
optimizer.step()
return td, critic_loss
def learn(self, batch: Batch, **kwargs: Any) -> Dict[str, float]:
# critic
td, critic_loss = self._mse_optimizer(batch, self.critic, self.critic_optim)
batch.weight = td # prio-buffer
# actor
actor_loss = -self.critic(batch.obs, self(batch).act).mean()
2020-03-18 21:45:41 +08:00
self.actor_optim.zero_grad()
actor_loss.backward()
self.actor_optim.step()
2020-03-19 17:23:46 +08:00
self.sync_weight()
return {
"loss/actor": actor_loss.item(),
"loss/critic": critic_loss.item(),
2020-03-19 17:23:46 +08:00
}
def exploration_noise(self, act: Union[np.ndarray, Batch],
batch: Batch) -> Union[np.ndarray, Batch]:
if self._noise is None:
return act
if isinstance(act, np.ndarray):
return act + self._noise(act.shape)
warnings.warn("Cannot add exploration noise to non-numpy_array action.")
return act