Tianshou/examples/mujoco/mujoco_sac_hl.py

95 lines
2.7 KiB
Python
Raw Normal View History

2023-09-20 09:29:34 +02:00
#!/usr/bin/env python3
import datetime
import os
from collections.abc import Sequence
from jsonargparse import CLI
from examples.mujoco.mujoco_env import MujocoEnvFactory
from tianshou.highlevel.agent import DefaultAutoAlphaFactory, SACAgentFactory, SACConfig
from tianshou.highlevel.config import RLSamplingConfig
2023-09-20 13:15:06 +02:00
from tianshou.highlevel.experiment import (
RLExperiment,
RLExperimentConfig,
2023-09-20 09:29:34 +02:00
)
2023-09-20 15:10:19 +02:00
from tianshou.highlevel.logger import DefaultLoggerFactory
2023-09-20 09:29:34 +02:00
from tianshou.highlevel.module import (
ContinuousActorProbFactory,
ContinuousNetCriticFactory,
)
from tianshou.highlevel.optim import AdamOptimizerFactory
def main(
2023-09-20 13:15:06 +02:00
experiment_config: RLExperimentConfig,
task: str = "Ant-v3",
buffer_size: int = 1000000,
2023-09-20 09:29:34 +02:00
hidden_sizes: Sequence[int] = (256, 256),
actor_lr: float = 1e-3,
critic_lr: float = 1e-3,
gamma: float = 0.99,
tau: float = 0.005,
alpha: float = 0.2,
auto_alpha: bool = False,
alpha_lr: float = 3e-4,
start_timesteps: int = 10000,
epoch: int = 200,
step_per_epoch: int = 5000,
step_per_collect: int = 1,
update_per_step: int = 1,
n_step: int = 1,
batch_size: int = 256,
training_num: int = 1,
test_num: int = 10,
2023-09-20 09:29:34 +02:00
):
now = datetime.datetime.now().strftime("%y%m%d-%H%M%S")
2023-09-20 13:15:06 +02:00
log_name = os.path.join(task, "sac", str(experiment_config.seed), now)
2023-09-20 15:10:19 +02:00
logger_factory = DefaultLoggerFactory()
2023-09-20 09:29:34 +02:00
sampling_config = RLSamplingConfig(
num_epochs=epoch,
step_per_epoch=step_per_epoch,
num_train_envs=training_num,
num_test_envs=test_num,
buffer_size=buffer_size,
batch_size=batch_size,
step_per_collect=step_per_collect,
update_per_step=update_per_step,
start_timesteps=start_timesteps,
start_timesteps_random=True,
)
2023-09-20 13:15:06 +02:00
env_factory = MujocoEnvFactory(task, experiment_config.seed, sampling_config)
2023-09-20 09:29:34 +02:00
if auto_alpha:
alpha = DefaultAutoAlphaFactory(lr=alpha_lr)
sac_config = SACConfig(
tau=tau,
gamma=gamma,
alpha=alpha,
estimation_step=n_step,
actor_lr=actor_lr,
critic1_lr=critic_lr,
critic2_lr=critic_lr,
)
2023-09-20 09:29:34 +02:00
actor_factory = ContinuousActorProbFactory(hidden_sizes, conditioned_sigma=True)
critic_factory = ContinuousNetCriticFactory(hidden_sizes)
optim_factory = AdamOptimizerFactory()
agent_factory = SACAgentFactory(
sac_config,
sampling_config,
actor_factory,
critic_factory,
critic_factory,
optim_factory,
)
experiment = RLExperiment(experiment_config, env_factory, logger_factory, agent_factory)
experiment.run(log_name)
if __name__ == "__main__":
CLI(main)