2023-09-20 09:29:34 +02:00
|
|
|
#!/usr/bin/env python3
|
|
|
|
|
|
|
|
import datetime
|
|
|
|
import os
|
|
|
|
from collections.abc import Sequence
|
|
|
|
|
|
|
|
from jsonargparse import CLI
|
|
|
|
|
|
|
|
from examples.mujoco.mujoco_env import MujocoEnvFactory
|
2023-09-20 15:13:05 +02:00
|
|
|
from tianshou.highlevel.agent import DefaultAutoAlphaFactory, SACAgentFactory, SACConfig
|
2023-09-20 15:45:09 +02:00
|
|
|
from tianshou.highlevel.config import RLSamplingConfig
|
2023-09-20 13:15:06 +02:00
|
|
|
from tianshou.highlevel.experiment import (
|
|
|
|
RLExperiment,
|
|
|
|
RLExperimentConfig,
|
2023-09-20 09:29:34 +02:00
|
|
|
)
|
2023-09-20 15:10:19 +02:00
|
|
|
from tianshou.highlevel.logger import DefaultLoggerFactory
|
2023-09-20 09:29:34 +02:00
|
|
|
from tianshou.highlevel.module import (
|
|
|
|
ContinuousActorProbFactory,
|
|
|
|
ContinuousNetCriticFactory,
|
|
|
|
)
|
|
|
|
from tianshou.highlevel.optim import AdamOptimizerFactory
|
|
|
|
|
|
|
|
|
|
|
|
def main(
|
2023-09-20 13:15:06 +02:00
|
|
|
experiment_config: RLExperimentConfig,
|
2023-09-20 15:13:05 +02:00
|
|
|
task: str = "Ant-v3",
|
|
|
|
buffer_size: int = 1000000,
|
2023-09-20 09:29:34 +02:00
|
|
|
hidden_sizes: Sequence[int] = (256, 256),
|
2023-09-20 15:13:05 +02:00
|
|
|
actor_lr: float = 1e-3,
|
|
|
|
critic_lr: float = 1e-3,
|
|
|
|
gamma: float = 0.99,
|
|
|
|
tau: float = 0.005,
|
|
|
|
alpha: float = 0.2,
|
|
|
|
auto_alpha: bool = False,
|
|
|
|
alpha_lr: float = 3e-4,
|
|
|
|
start_timesteps: int = 10000,
|
|
|
|
epoch: int = 200,
|
|
|
|
step_per_epoch: int = 5000,
|
|
|
|
step_per_collect: int = 1,
|
|
|
|
update_per_step: int = 1,
|
|
|
|
n_step: int = 1,
|
|
|
|
batch_size: int = 256,
|
|
|
|
training_num: int = 1,
|
|
|
|
test_num: int = 10,
|
2023-09-20 09:29:34 +02:00
|
|
|
):
|
|
|
|
now = datetime.datetime.now().strftime("%y%m%d-%H%M%S")
|
2023-09-20 13:15:06 +02:00
|
|
|
log_name = os.path.join(task, "sac", str(experiment_config.seed), now)
|
2023-09-20 15:10:19 +02:00
|
|
|
logger_factory = DefaultLoggerFactory()
|
2023-09-20 09:29:34 +02:00
|
|
|
|
2023-09-20 15:13:05 +02:00
|
|
|
sampling_config = RLSamplingConfig(
|
|
|
|
num_epochs=epoch,
|
|
|
|
step_per_epoch=step_per_epoch,
|
|
|
|
num_train_envs=training_num,
|
|
|
|
num_test_envs=test_num,
|
|
|
|
buffer_size=buffer_size,
|
|
|
|
batch_size=batch_size,
|
|
|
|
step_per_collect=step_per_collect,
|
|
|
|
update_per_step=update_per_step,
|
|
|
|
start_timesteps=start_timesteps,
|
|
|
|
start_timesteps_random=True,
|
|
|
|
)
|
|
|
|
|
2023-09-20 13:15:06 +02:00
|
|
|
env_factory = MujocoEnvFactory(task, experiment_config.seed, sampling_config)
|
2023-09-20 09:29:34 +02:00
|
|
|
|
2023-09-20 15:13:05 +02:00
|
|
|
if auto_alpha:
|
|
|
|
alpha = DefaultAutoAlphaFactory(lr=alpha_lr)
|
|
|
|
sac_config = SACConfig(
|
|
|
|
tau=tau,
|
|
|
|
gamma=gamma,
|
|
|
|
alpha=alpha,
|
|
|
|
estimation_step=n_step,
|
|
|
|
actor_lr=actor_lr,
|
|
|
|
critic1_lr=critic_lr,
|
|
|
|
critic2_lr=critic_lr,
|
|
|
|
)
|
2023-09-20 09:29:34 +02:00
|
|
|
actor_factory = ContinuousActorProbFactory(hidden_sizes, conditioned_sigma=True)
|
|
|
|
critic_factory = ContinuousNetCriticFactory(hidden_sizes)
|
|
|
|
optim_factory = AdamOptimizerFactory()
|
|
|
|
agent_factory = SACAgentFactory(
|
|
|
|
sac_config,
|
|
|
|
sampling_config,
|
|
|
|
actor_factory,
|
|
|
|
critic_factory,
|
|
|
|
critic_factory,
|
|
|
|
optim_factory,
|
|
|
|
)
|
|
|
|
|
|
|
|
experiment = RLExperiment(experiment_config, env_factory, logger_factory, agent_factory)
|
|
|
|
|
|
|
|
experiment.run(log_name)
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
CLI(main)
|