Tianshou/test/continuous/test_ppo.py

124 lines
4.6 KiB
Python
Raw Normal View History

import os
2020-03-21 17:04:42 +08:00
import gym
import torch
import pprint
import argparse
import numpy as np
from torch.utils.tensorboard import SummaryWriter
from tianshou.policy import PPOPolicy
2020-04-03 21:28:12 +08:00
from tianshou.env import VectorEnv
2020-03-21 17:04:42 +08:00
from tianshou.trainer import onpolicy_trainer
from tianshou.data import Collector, ReplayBuffer
if __name__ == '__main__':
from net import ActorProb, Critic
else: # pytest
from test.continuous.net import ActorProb, Critic
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--task', type=str, default='Pendulum-v0')
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--buffer-size', type=int, default=20000)
2020-03-25 14:08:28 +08:00
parser.add_argument('--lr', type=float, default=3e-4)
2020-03-21 17:04:42 +08:00
parser.add_argument('--gamma', type=float, default=0.9)
parser.add_argument('--epoch', type=int, default=20)
2020-03-21 17:04:42 +08:00
parser.add_argument('--step-per-epoch', type=int, default=1000)
parser.add_argument('--collect-per-step', type=int, default=10)
parser.add_argument('--repeat-per-collect', type=int, default=10)
2020-03-21 17:04:42 +08:00
parser.add_argument('--batch-size', type=int, default=64)
parser.add_argument('--layer-num', type=int, default=1)
parser.add_argument('--training-num', type=int, default=16)
parser.add_argument('--test-num', type=int, default=100)
parser.add_argument('--logdir', type=str, default='log')
parser.add_argument('--render', type=float, default=0.)
2020-03-21 17:04:42 +08:00
parser.add_argument(
'--device', type=str,
default='cuda' if torch.cuda.is_available() else 'cpu')
# ppo special
parser.add_argument('--vf-coef', type=float, default=0.5)
parser.add_argument('--ent-coef', type=float, default=0.0)
parser.add_argument('--eps-clip', type=float, default=0.2)
parser.add_argument('--max-grad-norm', type=float, default=0.5)
args = parser.parse_known_args()[0]
return args
def _test_ppo(args=get_args()):
# just a demo, I have not made it work :(
torch.set_num_threads(1) # we just need only one thread for NN
2020-03-21 17:04:42 +08:00
env = gym.make(args.task)
if args.task == 'Pendulum-v0':
env.spec.reward_threshold = -250
args.state_shape = env.observation_space.shape or env.observation_space.n
args.action_shape = env.action_space.shape or env.action_space.n
args.max_action = env.action_space.high[0]
2020-04-03 21:28:12 +08:00
# you can also use tianshou.env.SubprocVectorEnv
2020-03-21 17:04:42 +08:00
# train_envs = gym.make(args.task)
2020-04-03 21:28:12 +08:00
train_envs = VectorEnv(
2020-03-25 14:08:28 +08:00
[lambda: gym.make(args.task) for _ in range(args.training_num)])
2020-03-21 17:04:42 +08:00
# test_envs = gym.make(args.task)
2020-04-03 21:28:12 +08:00
test_envs = VectorEnv(
2020-03-25 14:08:28 +08:00
[lambda: gym.make(args.task) for _ in range(args.test_num)])
2020-03-21 17:04:42 +08:00
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
train_envs.seed(args.seed)
test_envs.seed(args.seed)
# model
actor = ActorProb(
args.layer_num, args.state_shape, args.action_shape,
args.max_action, args.device
).to(args.device)
critic = Critic(
args.layer_num, args.state_shape, device=args.device
).to(args.device)
optim = torch.optim.Adam(list(
actor.parameters()) + list(critic.parameters()), lr=args.lr)
dist = torch.distributions.Normal
policy = PPOPolicy(
actor, critic, optim, dist, args.gamma,
max_grad_norm=args.max_grad_norm,
eps_clip=args.eps_clip,
vf_coef=args.vf_coef,
ent_coef=args.ent_coef,
action_range=[env.action_space.low[0], env.action_space.high[0]])
# collector
train_collector = Collector(
2020-03-26 11:42:34 +08:00
policy, train_envs, ReplayBuffer(args.buffer_size))
2020-03-23 11:34:52 +08:00
test_collector = Collector(policy, test_envs)
2020-03-21 17:04:42 +08:00
train_collector.collect(n_step=args.step_per_epoch)
# log
2020-04-11 16:54:27 +08:00
log_path = os.path.join(args.logdir, args.task, 'ppo')
writer = SummaryWriter(log_path)
2020-03-21 17:04:42 +08:00
2020-04-11 16:54:27 +08:00
def save_fn(policy):
torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))
2020-03-21 17:04:42 +08:00
def stop_fn(x):
return x >= env.spec.reward_threshold
# trainer
result = onpolicy_trainer(
policy, train_collector, test_collector, args.epoch,
args.step_per_epoch, args.collect_per_step, args.repeat_per_collect,
2020-04-11 16:54:27 +08:00
args.test_num, args.batch_size, stop_fn=stop_fn, save_fn=save_fn,
writer=writer)
2020-03-21 17:04:42 +08:00
assert stop_fn(result['best_reward'])
train_collector.close()
test_collector.close()
if __name__ == '__main__':
pprint.pprint(result)
# Let's watch its performance!
env = gym.make(args.task)
collector = Collector(policy, env)
result = collector.collect(n_episode=1, render=args.render)
2020-03-21 17:04:42 +08:00
print(f'Final reward: {result["rew"]}, length: {result["len"]}')
collector.close()
if __name__ == '__main__':
_test_ppo()