2020-04-05 09:10:21 +08:00
|
|
|
import os
|
2020-03-23 17:17:41 +08:00
|
|
|
import gym
|
|
|
|
import torch
|
|
|
|
import pprint
|
|
|
|
import argparse
|
|
|
|
import numpy as np
|
|
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
|
|
|
2021-08-30 10:35:02 -04:00
|
|
|
from tianshou.utils import TensorboardLogger
|
2020-08-19 15:00:24 +08:00
|
|
|
from tianshou.env import DummyVectorEnv
|
2020-09-02 13:03:32 +08:00
|
|
|
from tianshou.utils.net.common import Net
|
2020-03-23 17:17:41 +08:00
|
|
|
from tianshou.trainer import offpolicy_trainer
|
2021-02-19 10:33:49 +08:00
|
|
|
from tianshou.data import Collector, VectorReplayBuffer
|
2020-04-13 19:37:27 +08:00
|
|
|
from tianshou.policy import SACPolicy, ImitationPolicy
|
2020-07-09 22:57:01 +08:00
|
|
|
from tianshou.utils.net.continuous import Actor, ActorProb, Critic
|
2020-03-23 17:17:41 +08:00
|
|
|
|
|
|
|
|
|
|
|
def get_args():
|
|
|
|
parser = argparse.ArgumentParser()
|
|
|
|
parser.add_argument('--task', type=str, default='Pendulum-v0')
|
2020-04-05 09:10:21 +08:00
|
|
|
parser.add_argument('--seed', type=int, default=0)
|
2020-03-23 17:17:41 +08:00
|
|
|
parser.add_argument('--buffer-size', type=int, default=20000)
|
2021-04-04 17:33:35 +08:00
|
|
|
parser.add_argument('--actor-lr', type=float, default=1e-3)
|
2020-03-23 17:17:41 +08:00
|
|
|
parser.add_argument('--critic-lr', type=float, default=1e-3)
|
2020-04-13 19:37:27 +08:00
|
|
|
parser.add_argument('--il-lr', type=float, default=1e-3)
|
2020-03-23 17:17:41 +08:00
|
|
|
parser.add_argument('--gamma', type=float, default=0.99)
|
|
|
|
parser.add_argument('--tau', type=float, default=0.005)
|
|
|
|
parser.add_argument('--alpha', type=float, default=0.2)
|
2021-04-04 17:33:35 +08:00
|
|
|
parser.add_argument('--auto-alpha', type=int, default=1)
|
|
|
|
parser.add_argument('--alpha-lr', type=float, default=3e-4)
|
2021-02-27 11:20:43 +08:00
|
|
|
parser.add_argument('--epoch', type=int, default=5)
|
2021-02-21 13:06:02 +08:00
|
|
|
parser.add_argument('--step-per-epoch', type=int, default=24000)
|
|
|
|
parser.add_argument('--il-step-per-epoch', type=int, default=500)
|
|
|
|
parser.add_argument('--step-per-collect', type=int, default=10)
|
|
|
|
parser.add_argument('--update-per-step', type=float, default=0.1)
|
2020-03-23 17:17:41 +08:00
|
|
|
parser.add_argument('--batch-size', type=int, default=128)
|
2021-01-20 16:54:13 +08:00
|
|
|
parser.add_argument('--hidden-sizes', type=int,
|
|
|
|
nargs='*', default=[128, 128])
|
|
|
|
parser.add_argument('--imitation-hidden-sizes', type=int,
|
|
|
|
nargs='*', default=[128, 128])
|
2021-02-19 10:33:49 +08:00
|
|
|
parser.add_argument('--training-num', type=int, default=10)
|
2020-03-23 17:17:41 +08:00
|
|
|
parser.add_argument('--test-num', type=int, default=100)
|
|
|
|
parser.add_argument('--logdir', type=str, default='log')
|
2020-03-28 07:27:18 +08:00
|
|
|
parser.add_argument('--render', type=float, default=0.)
|
2021-02-27 11:20:43 +08:00
|
|
|
parser.add_argument('--rew-norm', action="store_true", default=False)
|
2021-04-04 17:33:35 +08:00
|
|
|
parser.add_argument('--n-step', type=int, default=3)
|
2020-03-23 17:17:41 +08:00
|
|
|
parser.add_argument(
|
|
|
|
'--device', type=str,
|
|
|
|
default='cuda' if torch.cuda.is_available() else 'cpu')
|
|
|
|
args = parser.parse_known_args()[0]
|
|
|
|
return args
|
|
|
|
|
|
|
|
|
2020-04-13 19:37:27 +08:00
|
|
|
def test_sac_with_il(args=get_args()):
|
2020-04-05 09:10:21 +08:00
|
|
|
torch.set_num_threads(1) # we just need only one thread for NN
|
2020-03-23 17:17:41 +08:00
|
|
|
env = gym.make(args.task)
|
|
|
|
if args.task == 'Pendulum-v0':
|
|
|
|
env.spec.reward_threshold = -250
|
|
|
|
args.state_shape = env.observation_space.shape or env.observation_space.n
|
|
|
|
args.action_shape = env.action_space.shape or env.action_space.n
|
|
|
|
args.max_action = env.action_space.high[0]
|
2020-04-03 21:28:12 +08:00
|
|
|
# you can also use tianshou.env.SubprocVectorEnv
|
2020-03-23 17:17:41 +08:00
|
|
|
# train_envs = gym.make(args.task)
|
2020-08-19 15:00:24 +08:00
|
|
|
train_envs = DummyVectorEnv(
|
2020-03-25 14:08:28 +08:00
|
|
|
[lambda: gym.make(args.task) for _ in range(args.training_num)])
|
2020-03-23 17:17:41 +08:00
|
|
|
# test_envs = gym.make(args.task)
|
2020-08-19 15:00:24 +08:00
|
|
|
test_envs = DummyVectorEnv(
|
2020-03-25 14:08:28 +08:00
|
|
|
[lambda: gym.make(args.task) for _ in range(args.test_num)])
|
2020-03-23 17:17:41 +08:00
|
|
|
# seed
|
|
|
|
np.random.seed(args.seed)
|
|
|
|
torch.manual_seed(args.seed)
|
|
|
|
train_envs.seed(args.seed)
|
|
|
|
test_envs.seed(args.seed)
|
|
|
|
# model
|
2021-01-20 16:54:13 +08:00
|
|
|
net = Net(args.state_shape, hidden_sizes=args.hidden_sizes,
|
|
|
|
device=args.device)
|
|
|
|
actor = ActorProb(net, args.action_shape, max_action=args.max_action,
|
|
|
|
device=args.device, unbounded=True).to(args.device)
|
2020-03-23 17:17:41 +08:00
|
|
|
actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
|
2021-01-20 16:54:13 +08:00
|
|
|
net_c1 = Net(args.state_shape, args.action_shape,
|
|
|
|
hidden_sizes=args.hidden_sizes,
|
|
|
|
concat=True, device=args.device)
|
|
|
|
critic1 = Critic(net_c1, device=args.device).to(args.device)
|
2020-03-23 17:17:41 +08:00
|
|
|
critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr)
|
2021-01-20 16:54:13 +08:00
|
|
|
net_c2 = Net(args.state_shape, args.action_shape,
|
|
|
|
hidden_sizes=args.hidden_sizes,
|
|
|
|
concat=True, device=args.device)
|
|
|
|
critic2 = Critic(net_c2, device=args.device).to(args.device)
|
2020-03-23 17:17:41 +08:00
|
|
|
critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr)
|
2021-04-04 17:33:35 +08:00
|
|
|
|
|
|
|
if args.auto_alpha:
|
|
|
|
target_entropy = -np.prod(env.action_space.shape)
|
|
|
|
log_alpha = torch.zeros(1, requires_grad=True, device=args.device)
|
|
|
|
alpha_optim = torch.optim.Adam([log_alpha], lr=args.alpha_lr)
|
|
|
|
args.alpha = (target_entropy, log_alpha, alpha_optim)
|
|
|
|
|
2020-03-23 17:17:41 +08:00
|
|
|
policy = SACPolicy(
|
|
|
|
actor, actor_optim, critic1, critic1_optim, critic2, critic2_optim,
|
2020-09-12 15:39:01 +08:00
|
|
|
tau=args.tau, gamma=args.gamma, alpha=args.alpha,
|
2020-06-03 13:59:47 +08:00
|
|
|
reward_normalization=args.rew_norm,
|
2021-03-21 16:45:50 +08:00
|
|
|
estimation_step=args.n_step, action_space=env.action_space)
|
2020-03-23 17:17:41 +08:00
|
|
|
# collector
|
|
|
|
train_collector = Collector(
|
2021-02-19 10:33:49 +08:00
|
|
|
policy, train_envs,
|
|
|
|
VectorReplayBuffer(args.buffer_size, len(train_envs)),
|
|
|
|
exploration_noise=True)
|
2020-03-23 17:17:41 +08:00
|
|
|
test_collector = Collector(policy, test_envs)
|
2020-03-25 14:08:28 +08:00
|
|
|
# train_collector.collect(n_step=args.buffer_size)
|
2020-03-23 17:17:41 +08:00
|
|
|
# log
|
2020-04-11 16:54:27 +08:00
|
|
|
log_path = os.path.join(args.logdir, args.task, 'sac')
|
2020-04-05 09:10:21 +08:00
|
|
|
writer = SummaryWriter(log_path)
|
2021-08-30 10:35:02 -04:00
|
|
|
logger = TensorboardLogger(writer)
|
2020-03-23 17:17:41 +08:00
|
|
|
|
2020-04-11 16:54:27 +08:00
|
|
|
def save_fn(policy):
|
|
|
|
torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))
|
|
|
|
|
2020-09-26 16:35:37 +08:00
|
|
|
def stop_fn(mean_rewards):
|
|
|
|
return mean_rewards >= env.spec.reward_threshold
|
2020-03-23 17:17:41 +08:00
|
|
|
|
|
|
|
# trainer
|
|
|
|
result = offpolicy_trainer(
|
|
|
|
policy, train_collector, test_collector, args.epoch,
|
2021-02-21 13:06:02 +08:00
|
|
|
args.step_per_epoch, args.step_per_collect, args.test_num, args.batch_size,
|
|
|
|
update_per_step=args.update_per_step, stop_fn=stop_fn,
|
2021-02-24 14:48:42 +08:00
|
|
|
save_fn=save_fn, logger=logger)
|
2020-03-25 14:08:28 +08:00
|
|
|
assert stop_fn(result['best_reward'])
|
2021-05-06 08:53:53 +08:00
|
|
|
|
2020-03-23 17:17:41 +08:00
|
|
|
if __name__ == '__main__':
|
|
|
|
pprint.pprint(result)
|
|
|
|
# Let's watch its performance!
|
|
|
|
env = gym.make(args.task)
|
2020-08-27 12:15:18 +08:00
|
|
|
policy.eval()
|
2020-03-23 17:17:41 +08:00
|
|
|
collector = Collector(policy, env)
|
2020-03-28 07:27:18 +08:00
|
|
|
result = collector.collect(n_episode=1, render=args.render)
|
2021-02-19 10:33:49 +08:00
|
|
|
rews, lens = result["rews"], result["lens"]
|
|
|
|
print(f"Final reward: {rews.mean()}, length: {lens.mean()}")
|
2020-03-23 17:17:41 +08:00
|
|
|
|
2020-04-13 19:37:27 +08:00
|
|
|
# here we define an imitation collector with a trivial policy
|
2020-08-27 12:15:18 +08:00
|
|
|
policy.eval()
|
2020-04-13 19:37:27 +08:00
|
|
|
if args.task == 'Pendulum-v0':
|
|
|
|
env.spec.reward_threshold = -300 # lower the goal
|
2020-10-04 21:55:43 +08:00
|
|
|
net = Actor(
|
2021-01-20 16:54:13 +08:00
|
|
|
Net(args.state_shape, hidden_sizes=args.imitation_hidden_sizes,
|
|
|
|
device=args.device),
|
|
|
|
args.action_shape, max_action=args.max_action, device=args.device
|
2020-10-04 21:55:43 +08:00
|
|
|
).to(args.device)
|
2020-04-13 19:37:27 +08:00
|
|
|
optim = torch.optim.Adam(net.parameters(), lr=args.il_lr)
|
2021-04-04 17:33:35 +08:00
|
|
|
il_policy = ImitationPolicy(
|
2021-04-27 21:22:39 +08:00
|
|
|
net, optim, action_space=env.action_space,
|
2021-04-04 17:33:35 +08:00
|
|
|
action_scaling=True, action_bound_method="clip")
|
2020-08-19 15:00:24 +08:00
|
|
|
il_test_collector = Collector(
|
|
|
|
il_policy,
|
2021-04-04 17:33:35 +08:00
|
|
|
DummyVectorEnv([lambda: gym.make(args.task) for _ in range(args.test_num)])
|
2020-08-19 15:00:24 +08:00
|
|
|
)
|
2020-04-13 19:37:27 +08:00
|
|
|
train_collector.reset()
|
|
|
|
result = offpolicy_trainer(
|
|
|
|
il_policy, train_collector, il_test_collector, args.epoch,
|
2021-02-21 13:06:02 +08:00
|
|
|
args.il_step_per_epoch, args.step_per_collect, args.test_num,
|
2021-02-24 14:48:42 +08:00
|
|
|
args.batch_size, stop_fn=stop_fn, save_fn=save_fn, logger=logger)
|
2020-04-13 19:37:27 +08:00
|
|
|
assert stop_fn(result['best_reward'])
|
2021-04-04 17:33:35 +08:00
|
|
|
|
2020-04-13 19:37:27 +08:00
|
|
|
if __name__ == '__main__':
|
|
|
|
pprint.pprint(result)
|
|
|
|
# Let's watch its performance!
|
|
|
|
env = gym.make(args.task)
|
2020-08-27 12:15:18 +08:00
|
|
|
il_policy.eval()
|
2020-04-13 19:37:27 +08:00
|
|
|
collector = Collector(il_policy, env)
|
|
|
|
result = collector.collect(n_episode=1, render=args.render)
|
2021-02-19 10:33:49 +08:00
|
|
|
rews, lens = result["rews"], result["lens"]
|
|
|
|
print(f"Final reward: {rews.mean()}, length: {lens.mean()}")
|
2020-04-13 19:37:27 +08:00
|
|
|
|
2020-03-23 17:17:41 +08:00
|
|
|
|
|
|
|
if __name__ == '__main__':
|
2020-04-13 19:37:27 +08:00
|
|
|
test_sac_with_il()
|