Tianshou/test/discrete/test_dqn.py

106 lines
3.7 KiB
Python
Raw Normal View History

2020-03-15 17:41:00 +08:00
import gym
import torch
2020-03-20 19:52:29 +08:00
import pprint
2020-03-15 17:41:00 +08:00
import argparse
import numpy as np
from torch.utils.tensorboard import SummaryWriter
from tianshou.policy import DQNPolicy
from tianshou.env import SubprocVectorEnv
2020-03-20 19:52:29 +08:00
from tianshou.trainer import offpolicy_trainer
2020-03-15 17:41:00 +08:00
from tianshou.data import Collector, ReplayBuffer
2020-03-21 10:58:01 +08:00
if __name__ == '__main__':
from net import Net
else: # pytest
from test.discrete.net import Net
2020-03-15 17:41:00 +08:00
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--task', type=str, default='CartPole-v0')
2020-03-16 11:11:29 +08:00
parser.add_argument('--seed', type=int, default=1626)
2020-03-15 17:41:00 +08:00
parser.add_argument('--eps-test', type=float, default=0.05)
parser.add_argument('--eps-train', type=float, default=0.1)
parser.add_argument('--buffer-size', type=int, default=20000)
2020-03-17 15:16:30 +08:00
parser.add_argument('--lr', type=float, default=3e-4)
2020-03-15 17:41:00 +08:00
parser.add_argument('--gamma', type=float, default=0.9)
parser.add_argument('--n-step', type=int, default=1)
parser.add_argument('--epoch', type=int, default=100)
parser.add_argument('--step-per-epoch', type=int, default=320)
parser.add_argument('--collect-per-step', type=int, default=10)
parser.add_argument('--batch-size', type=int, default=64)
parser.add_argument('--layer-num', type=int, default=3)
parser.add_argument('--training-num', type=int, default=8)
2020-03-17 15:16:30 +08:00
parser.add_argument('--test-num', type=int, default=100)
2020-03-15 17:41:00 +08:00
parser.add_argument('--logdir', type=str, default='log')
parser.add_argument(
'--device', type=str,
default='cuda' if torch.cuda.is_available() else 'cpu')
args = parser.parse_known_args()[0]
return args
def test_dqn(args=get_args()):
env = gym.make(args.task)
args.state_shape = env.observation_space.shape or env.observation_space.n
args.action_shape = env.action_space.shape or env.action_space.n
2020-03-17 11:37:31 +08:00
# train_envs = gym.make(args.task)
2020-03-15 17:41:00 +08:00
train_envs = SubprocVectorEnv(
[lambda: gym.make(args.task) for _ in range(args.training_num)],
reset_after_done=True)
2020-03-16 11:11:29 +08:00
# test_envs = gym.make(args.task)
2020-03-15 17:41:00 +08:00
test_envs = SubprocVectorEnv(
[lambda: gym.make(args.task) for _ in range(args.test_num)],
reset_after_done=False)
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
train_envs.seed(args.seed)
test_envs.seed(args.seed)
# model
net = Net(args.layer_num, args.state_shape, args.action_shape, args.device)
net = net.to(args.device)
optim = torch.optim.Adam(net.parameters(), lr=args.lr)
2020-03-18 21:45:41 +08:00
policy = DQNPolicy(net, optim, args.gamma, args.n_step)
2020-03-15 17:41:00 +08:00
# collector
2020-03-19 17:23:46 +08:00
train_collector = Collector(
2020-03-15 17:41:00 +08:00
policy, train_envs, ReplayBuffer(args.buffer_size))
2020-03-18 21:45:41 +08:00
test_collector = Collector(policy, test_envs, stat_size=args.test_num)
2020-03-19 17:23:46 +08:00
train_collector.collect(n_step=args.batch_size)
2020-03-15 17:41:00 +08:00
# log
writer = SummaryWriter(args.logdir)
2020-03-19 17:23:46 +08:00
def stop_fn(x):
return x >= env.spec.reward_threshold
def train_fn(x):
2020-03-15 17:41:00 +08:00
policy.sync_weight()
policy.set_eps(args.eps_train)
2020-03-19 17:23:46 +08:00
def test_fn(x):
2020-03-15 17:41:00 +08:00
policy.set_eps(args.eps_test)
2020-03-19 17:23:46 +08:00
# trainer
2020-03-20 19:52:29 +08:00
result = offpolicy_trainer(
policy, train_collector, test_collector, args.epoch,
args.step_per_epoch, args.collect_per_step, args.test_num,
args.batch_size, train_fn=train_fn, test_fn=test_fn,
stop_fn=stop_fn, writer=writer)
2020-03-19 17:23:46 +08:00
2020-03-20 19:52:29 +08:00
assert stop_fn(result['best_reward'])
2020-03-19 17:23:46 +08:00
train_collector.close()
2020-03-17 11:37:31 +08:00
test_collector.close()
2020-03-16 11:11:29 +08:00
if __name__ == '__main__':
2020-03-20 19:52:29 +08:00
pprint.pprint(result)
2020-03-16 15:04:58 +08:00
# Let's watch its performance!
2020-03-16 11:11:29 +08:00
env = gym.make(args.task)
2020-03-19 17:23:46 +08:00
collector = Collector(policy, env)
result = collector.collect(n_episode=1, render=1 / 35)
print(f'Final reward: {result["rew"]}, length: {result["len"]}')
collector.close()
2020-03-15 17:41:00 +08:00
if __name__ == '__main__':
test_dqn(get_args())