132 lines
5.2 KiB
Python
Raw Normal View History

2020-03-17 20:22:37 +08:00
import torch
2020-04-14 21:11:06 +08:00
import numpy as np
2020-03-18 21:45:41 +08:00
from torch import nn
2020-03-17 20:22:37 +08:00
import torch.nn.functional as F
2020-05-12 11:31:47 +08:00
from typing import Dict, List, Union, Optional
2020-03-17 20:22:37 +08:00
from tianshou.policy import PGPolicy
2020-06-03 13:59:47 +08:00
from tianshou.data import Batch, ReplayBuffer, to_torch_as, to_numpy
2020-03-17 20:22:37 +08:00
class A2CPolicy(PGPolicy):
2020-04-06 19:36:59 +08:00
"""Implementation of Synchronous Advantage Actor-Critic. arXiv:1602.01783
:param torch.nn.Module actor: the actor network following the rules in
:class:`~tianshou.policy.BasePolicy`. (s -> logits)
:param torch.nn.Module critic: the critic network. (s -> V(s))
:param torch.optim.Optimizer optim: the optimizer for actor and critic
network.
:param torch.distributions.Distribution dist_fn: for computing the action,
defaults to ``torch.distributions.Categorical``.
:param float discount_factor: in [0, 1], defaults to 0.99.
:param float vf_coef: weight for value loss, defaults to 0.5.
:param float ent_coef: weight for entropy loss, defaults to 0.01.
:param float max_grad_norm: clipping gradients in back propagation,
defaults to ``None``.
2020-04-14 21:11:06 +08:00
:param float gae_lambda: in [0, 1], param for Generalized Advantage
Estimation, defaults to 0.95.
.. seealso::
Please refer to :class:`~tianshou.policy.BasePolicy` for more detailed
explanation.
2020-04-06 19:36:59 +08:00
"""
2020-03-17 20:22:37 +08:00
2020-05-12 11:31:47 +08:00
def __init__(self,
actor: torch.nn.Module,
critic: torch.nn.Module,
optim: torch.optim.Optimizer,
2020-05-16 20:08:32 +08:00
dist_fn: torch.distributions.Distribution
2020-05-12 11:31:47 +08:00
= torch.distributions.Categorical,
2020-05-16 20:08:32 +08:00
discount_factor: float = 0.99,
vf_coef: float = .5,
ent_coef: float = .01,
2020-05-12 11:31:47 +08:00
max_grad_norm: Optional[float] = None,
2020-05-16 20:08:32 +08:00
gae_lambda: float = 0.95,
reward_normalization: bool = False,
2020-05-12 11:31:47 +08:00
**kwargs) -> None:
2020-04-08 21:13:15 +08:00
super().__init__(None, optim, dist_fn, discount_factor, **kwargs)
2020-03-19 17:23:46 +08:00
self.actor = actor
self.critic = critic
2020-04-14 21:11:06 +08:00
assert 0 <= gae_lambda <= 1, 'GAE lambda should be in [0, 1].'
self._lambda = gae_lambda
2020-03-20 19:52:29 +08:00
self._w_vf = vf_coef
self._w_ent = ent_coef
2020-03-18 21:45:41 +08:00
self._grad_norm = max_grad_norm
2020-04-14 21:11:06 +08:00
self._batch = 64
2020-04-26 16:13:51 +08:00
self._rew_norm = reward_normalization
2020-04-14 21:11:06 +08:00
2020-05-12 11:31:47 +08:00
def process_fn(self, batch: Batch, buffer: ReplayBuffer,
indice: np.ndarray) -> Batch:
2020-04-14 21:11:06 +08:00
if self._lambda in [0, 1]:
return self.compute_episodic_return(
batch, None, gamma=self._gamma, gae_lambda=self._lambda)
v_ = []
with torch.no_grad():
2020-04-28 20:56:02 +08:00
for b in batch.split(self._batch, shuffle=False):
v_.append(to_numpy(self.critic(b.obs_next)))
2020-04-14 21:11:06 +08:00
v_ = np.concatenate(v_, axis=0)
return self.compute_episodic_return(
batch, v_, gamma=self._gamma, gae_lambda=self._lambda,
rew_norm=self._rew_norm)
2020-03-17 20:22:37 +08:00
2020-05-12 11:31:47 +08:00
def forward(self, batch: Batch,
state: Optional[Union[dict, Batch, np.ndarray]] = None,
**kwargs) -> Batch:
2020-04-06 19:36:59 +08:00
"""Compute action over the given batch data.
:return: A :class:`~tianshou.data.Batch` which has 4 keys:
* ``act`` the action.
* ``logits`` the network's raw output.
* ``dist`` the action distribution.
* ``state`` the hidden state.
.. seealso::
2020-04-10 10:47:16 +08:00
Please refer to :meth:`~tianshou.policy.BasePolicy.forward` for
more detailed explanation.
2020-04-06 19:36:59 +08:00
"""
2020-03-19 17:23:46 +08:00
logits, h = self.actor(batch.obs, state=state, info=batch.info)
2020-04-06 19:36:59 +08:00
if isinstance(logits, tuple):
dist = self.dist_fn(*logits)
else:
dist = self.dist_fn(logits)
2020-03-18 21:45:41 +08:00
act = dist.sample()
2020-03-19 17:23:46 +08:00
return Batch(logits=logits, act=act, state=h, dist=dist)
2020-03-17 20:22:37 +08:00
2020-05-12 11:31:47 +08:00
def learn(self, batch: Batch, batch_size: int, repeat: int,
**kwargs) -> Dict[str, List[float]]:
2020-04-14 21:11:06 +08:00
self._batch = batch_size
2020-03-20 19:52:29 +08:00
losses, actor_losses, vf_losses, ent_losses = [], [], [], []
for _ in range(repeat):
for b in batch.split(batch_size):
self.optim.zero_grad()
dist = self(b).dist
v = self.critic(b.obs).flatten()
2020-06-03 13:59:47 +08:00
a = to_torch_as(b.act, v)
r = to_torch_as(b.returns, v)
log_prob = dist.log_prob(a).reshape(
r.shape[0], -1).transpose(0, 1)
a_loss = -(log_prob * (r - v).detach()).mean()
vf_loss = F.mse_loss(r, v)
2020-03-20 19:52:29 +08:00
ent_loss = dist.entropy().mean()
2020-03-26 11:42:34 +08:00
loss = a_loss + self._w_vf * vf_loss - self._w_ent * ent_loss
2020-03-20 19:52:29 +08:00
loss.backward()
2020-06-03 13:59:47 +08:00
if self._grad_norm is not None:
2020-03-20 19:52:29 +08:00
nn.utils.clip_grad_norm_(
2020-05-04 12:33:04 +08:00
list(self.actor.parameters()) +
list(self.critic.parameters()),
max_norm=self._grad_norm)
2020-03-20 19:52:29 +08:00
self.optim.step()
2020-04-03 21:28:12 +08:00
actor_losses.append(a_loss.item())
vf_losses.append(vf_loss.item())
ent_losses.append(ent_loss.item())
losses.append(loss.item())
2020-03-20 19:52:29 +08:00
return {
'loss': losses,
'loss/actor': actor_losses,
'loss/vf': vf_losses,
'loss/ent': ent_losses,
}