Tianshou/test/continuous/test_ppo.py

138 lines
5.6 KiB
Python
Raw Normal View History

import os
2020-03-21 17:04:42 +08:00
import gym
import torch
import pprint
import argparse
import numpy as np
from torch.utils.tensorboard import SummaryWriter
from torch.distributions import Independent, Normal
2020-03-21 17:04:42 +08:00
2020-04-14 21:11:06 +08:00
from tianshou.policy import PPOPolicy
from tianshou.env import DummyVectorEnv
from tianshou.utils.net.common import Net
2020-03-21 17:04:42 +08:00
from tianshou.trainer import onpolicy_trainer
from tianshou.data import Collector, ReplayBuffer
from tianshou.utils.net.continuous import ActorProb, Critic
2020-03-21 17:04:42 +08:00
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--task', type=str, default='Pendulum-v0')
parser.add_argument('--seed', type=int, default=1)
2020-03-21 17:04:42 +08:00
parser.add_argument('--buffer-size', type=int, default=20000)
2020-04-14 21:11:06 +08:00
parser.add_argument('--lr', type=float, default=1e-3)
parser.add_argument('--gamma', type=float, default=0.99)
parser.add_argument('--epoch', type=int, default=20)
parser.add_argument('--step-per-epoch', type=int, default=2400)
2020-04-14 21:11:06 +08:00
parser.add_argument('--collect-per-step', type=int, default=1)
parser.add_argument('--repeat-per-collect', type=int, default=2)
2020-04-19 14:30:42 +08:00
parser.add_argument('--batch-size', type=int, default=128)
parser.add_argument('--hidden-sizes', type=int,
nargs='*', default=[128, 128])
2020-04-19 14:30:42 +08:00
parser.add_argument('--training-num', type=int, default=16)
2020-03-21 17:04:42 +08:00
parser.add_argument('--test-num', type=int, default=100)
parser.add_argument('--logdir', type=str, default='log')
parser.add_argument('--render', type=float, default=0.)
2020-03-21 17:04:42 +08:00
parser.add_argument(
'--device', type=str,
default='cuda' if torch.cuda.is_available() else 'cpu')
# ppo special
parser.add_argument('--vf-coef', type=float, default=0.5)
2020-04-19 14:30:42 +08:00
parser.add_argument('--ent-coef', type=float, default=0.01)
2020-03-21 17:04:42 +08:00
parser.add_argument('--eps-clip', type=float, default=0.2)
parser.add_argument('--max-grad-norm', type=float, default=0.5)
2020-04-14 21:11:06 +08:00
parser.add_argument('--gae-lambda', type=float, default=0.95)
2020-06-03 13:59:47 +08:00
parser.add_argument('--rew-norm', type=int, default=1)
parser.add_argument('--dual-clip', type=float, default=None)
parser.add_argument('--value-clip', type=int, default=1)
2020-03-21 17:04:42 +08:00
args = parser.parse_known_args()[0]
return args
2020-04-19 14:30:42 +08:00
def test_ppo(args=get_args()):
torch.set_num_threads(1) # we just need only one thread for NN
2020-03-21 17:04:42 +08:00
env = gym.make(args.task)
if args.task == 'Pendulum-v0':
env.spec.reward_threshold = -250
args.state_shape = env.observation_space.shape or env.observation_space.n
args.action_shape = env.action_space.shape or env.action_space.n
args.max_action = env.action_space.high[0]
2020-04-03 21:28:12 +08:00
# you can also use tianshou.env.SubprocVectorEnv
2020-03-21 17:04:42 +08:00
# train_envs = gym.make(args.task)
train_envs = DummyVectorEnv(
2020-03-25 14:08:28 +08:00
[lambda: gym.make(args.task) for _ in range(args.training_num)])
2020-03-21 17:04:42 +08:00
# test_envs = gym.make(args.task)
test_envs = DummyVectorEnv(
2020-03-25 14:08:28 +08:00
[lambda: gym.make(args.task) for _ in range(args.test_num)])
2020-03-21 17:04:42 +08:00
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
train_envs.seed(args.seed)
test_envs.seed(args.seed)
# model
net = Net(args.state_shape, hidden_sizes=args.hidden_sizes,
device=args.device)
actor = ActorProb(net, args.action_shape, max_action=args.max_action,
device=args.device).to(args.device)
critic = Critic(Net(
args.state_shape, hidden_sizes=args.hidden_sizes, device=args.device
), device=args.device).to(args.device)
2020-05-16 20:27:01 +08:00
# orthogonal initialization
for m in list(actor.modules()) + list(critic.modules()):
if isinstance(m, torch.nn.Linear):
torch.nn.init.orthogonal_(m.weight)
2020-05-17 17:06:20 +08:00
torch.nn.init.zeros_(m.bias)
optim = torch.optim.Adam(set(
actor.parameters()).union(critic.parameters()), lr=args.lr)
# replace DiagGuassian with Independent(Normal) which is equivalent
# pass *logits to be consistent with policy.forward
def dist(*logits):
return Independent(Normal(*logits), 1)
2020-03-21 17:04:42 +08:00
policy = PPOPolicy(
actor, critic, optim, dist, args.gamma,
max_grad_norm=args.max_grad_norm,
eps_clip=args.eps_clip,
vf_coef=args.vf_coef,
ent_coef=args.ent_coef,
2020-04-19 14:30:42 +08:00
reward_normalization=args.rew_norm,
# dual_clip=args.dual_clip,
# dual clip cause monotonically increasing log_std :)
2020-04-19 14:30:42 +08:00
value_clip=args.value_clip,
# action_range=[env.action_space.low[0], env.action_space.high[0]],)
# if clip the action, ppo would not converge :)
2020-04-14 21:11:06 +08:00
gae_lambda=args.gae_lambda)
2020-03-21 17:04:42 +08:00
# collector
train_collector = Collector(
2020-03-26 11:42:34 +08:00
policy, train_envs, ReplayBuffer(args.buffer_size))
2020-03-23 11:34:52 +08:00
test_collector = Collector(policy, test_envs)
2020-03-21 17:04:42 +08:00
# log
2020-04-11 16:54:27 +08:00
log_path = os.path.join(args.logdir, args.task, 'ppo')
writer = SummaryWriter(log_path)
2020-03-21 17:04:42 +08:00
2020-04-11 16:54:27 +08:00
def save_fn(policy):
torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))
def stop_fn(mean_rewards):
return mean_rewards >= env.spec.reward_threshold
2020-03-21 17:04:42 +08:00
# trainer
result = onpolicy_trainer(
policy, train_collector, test_collector, args.epoch,
args.step_per_epoch, args.collect_per_step, args.repeat_per_collect,
2020-04-11 16:54:27 +08:00
args.test_num, args.batch_size, stop_fn=stop_fn, save_fn=save_fn,
writer=writer)
2020-03-21 17:04:42 +08:00
assert stop_fn(result['best_reward'])
if __name__ == '__main__':
pprint.pprint(result)
# Let's watch its performance!
env = gym.make(args.task)
policy.eval()
2020-03-21 17:04:42 +08:00
collector = Collector(policy, env)
result = collector.collect(n_episode=1, render=args.render)
2020-03-21 17:04:42 +08:00
print(f'Final reward: {result["rew"]}, length: {result["len"]}')
if __name__ == '__main__':
2020-04-19 14:30:42 +08:00
test_ppo()