Tianshou/examples/box2d/bipedal_hardcore_sac.py

166 lines
6.4 KiB
Python
Raw Normal View History

import os
import gym
import torch
import pprint
import argparse
import numpy as np
from torch.utils.tensorboard import SummaryWriter
2020-11-09 16:43:55 +08:00
from tianshou.policy import SACPolicy
from tianshou.utils import BasicLogger
2020-11-09 16:43:55 +08:00
from tianshou.utils.net.common import Net
from tianshou.env import SubprocVectorEnv
from tianshou.trainer import offpolicy_trainer
from tianshou.data import Collector, VectorReplayBuffer
from tianshou.utils.net.continuous import ActorProb, Critic
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--task', type=str, default="BipedalWalkerHardcore-v3")
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--buffer-size', type=int, default=1000000)
parser.add_argument('--actor-lr', type=float, default=3e-4)
parser.add_argument('--critic-lr', type=float, default=1e-3)
parser.add_argument('--gamma', type=float, default=0.99)
parser.add_argument('--tau', type=float, default=0.005)
parser.add_argument('--alpha', type=float, default=0.1)
2020-11-09 16:43:55 +08:00
parser.add_argument('--auto-alpha', type=int, default=1)
parser.add_argument('--alpha-lr', type=float, default=3e-4)
parser.add_argument('--epoch', type=int, default=100)
parser.add_argument('--step-per-epoch', type=int, default=100000)
parser.add_argument('--step-per-collect', type=int, default=10)
parser.add_argument('--update-per-step', type=float, default=0.1)
parser.add_argument('--batch-size', type=int, default=128)
parser.add_argument('--hidden-sizes', type=int,
nargs='*', default=[128, 128])
parser.add_argument('--training-num', type=int, default=10)
parser.add_argument('--test-num', type=int, default=100)
parser.add_argument('--logdir', type=str, default='log')
parser.add_argument('--render', type=float, default=0.)
parser.add_argument('--n-step', type=int, default=4)
parser.add_argument(
'--device', type=str,
default='cuda' if torch.cuda.is_available() else 'cpu')
2020-11-09 16:43:55 +08:00
parser.add_argument('--resume-path', type=str, default=None)
return parser.parse_args()
2020-11-09 16:43:55 +08:00
class Wrapper(gym.Wrapper):
"""Env wrapper for reward scale, action repeat and removing done penalty"""
2020-11-09 16:43:55 +08:00
def __init__(self, env, action_repeat=3, reward_scale=5, rm_done=True):
super().__init__(env)
self.action_repeat = action_repeat
self.reward_scale = reward_scale
2020-11-09 16:43:55 +08:00
self.rm_done = rm_done
def step(self, action):
r = 0.0
for _ in range(self.action_repeat):
2020-11-09 16:43:55 +08:00
obs, reward, done, info = self.env.step(action)
# remove done reward penalty
2020-11-09 16:43:55 +08:00
if not done or not self.rm_done:
r = r + reward
if done:
break
# scale reward
2020-11-09 16:43:55 +08:00
return obs, self.reward_scale * r, done, info
def test_sac_bipedal(args=get_args()):
2020-11-09 16:43:55 +08:00
env = Wrapper(gym.make(args.task))
args.state_shape = env.observation_space.shape or env.observation_space.n
args.action_shape = env.action_space.shape or env.action_space.n
args.max_action = env.action_space.high[0]
2020-11-09 16:43:55 +08:00
train_envs = SubprocVectorEnv([
lambda: Wrapper(gym.make(args.task))
for _ in range(args.training_num)])
# test_envs = gym.make(args.task)
2020-11-09 16:43:55 +08:00
test_envs = SubprocVectorEnv([
lambda: Wrapper(gym.make(args.task), reward_scale=1, rm_done=False)
for _ in range(args.test_num)])
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
train_envs.seed(args.seed)
test_envs.seed(args.seed)
# model
net_a = Net(args.state_shape, hidden_sizes=args.hidden_sizes,
device=args.device)
actor = ActorProb(
net_a, args.action_shape, max_action=args.max_action,
device=args.device, unbounded=True).to(args.device)
actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
net_c1 = Net(args.state_shape, args.action_shape,
hidden_sizes=args.hidden_sizes,
concat=True, device=args.device)
critic1 = Critic(net_c1, device=args.device).to(args.device)
critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr)
net_c2 = Net(args.state_shape, args.action_shape,
hidden_sizes=args.hidden_sizes,
concat=True, device=args.device)
critic2 = Critic(net_c2, device=args.device).to(args.device)
critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr)
if args.auto_alpha:
target_entropy = -np.prod(env.action_space.shape)
log_alpha = torch.zeros(1, requires_grad=True, device=args.device)
alpha_optim = torch.optim.Adam([log_alpha], lr=args.alpha_lr)
args.alpha = (target_entropy, log_alpha, alpha_optim)
policy = SACPolicy(
actor, actor_optim, critic1, critic1_optim, critic2, critic2_optim,
tau=args.tau, gamma=args.gamma, alpha=args.alpha,
estimation_step=args.n_step, action_space=env.action_space)
# load a previous policy
if args.resume_path:
policy.load_state_dict(torch.load(args.resume_path))
print("Loaded agent from: ", args.resume_path)
# collector
train_collector = Collector(
policy, train_envs,
VectorReplayBuffer(args.buffer_size, len(train_envs)),
exploration_noise=True)
test_collector = Collector(policy, test_envs)
# train_collector.collect(n_step=args.buffer_size)
# log
log_path = os.path.join(args.logdir, args.task, 'sac')
writer = SummaryWriter(log_path)
logger = BasicLogger(writer)
def save_fn(policy):
torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))
def stop_fn(mean_rewards):
return mean_rewards >= env.spec.reward_threshold
# trainer
result = offpolicy_trainer(
policy, train_collector, test_collector, args.epoch,
args.step_per_epoch, args.step_per_collect, args.test_num, args.batch_size,
update_per_step=args.update_per_step, test_in_train=False,
stop_fn=stop_fn, save_fn=save_fn, logger=logger)
if __name__ == '__main__':
pprint.pprint(result)
# Let's watch its performance!
policy.eval()
test_envs.seed(args.seed)
test_collector.reset()
result = test_collector.collect(n_episode=args.test_num,
render=args.render)
rews, lens = result["rews"], result["lens"]
print(f"Final reward: {rews.mean()}, length: {lens.mean()}")
if __name__ == '__main__':
test_sac_bipedal()