| 
									
										
										
										
											2020-04-11 16:54:27 +08:00
										 |  |  | import os | 
					
						
							| 
									
										
										
										
											2020-03-17 11:37:31 +08:00
										 |  |  | import gym | 
					
						
							|  |  |  | import time | 
					
						
							|  |  |  | import torch | 
					
						
							| 
									
										
										
										
											2020-03-20 19:52:29 +08:00
										 |  |  | import pprint | 
					
						
							| 
									
										
										
										
											2020-03-17 11:37:31 +08:00
										 |  |  | import argparse | 
					
						
							|  |  |  | import numpy as np | 
					
						
							|  |  |  | from torch.utils.tensorboard import SummaryWriter | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-07-09 22:57:01 +08:00
										 |  |  | from tianshou.utils.net.common import Net | 
					
						
							| 
									
										
										
										
											2020-03-29 10:22:03 +08:00
										 |  |  | from tianshou.env import VectorEnv | 
					
						
							| 
									
										
										
										
											2020-04-03 21:28:12 +08:00
										 |  |  | from tianshou.policy import PGPolicy | 
					
						
							| 
									
										
										
										
											2020-03-20 19:52:29 +08:00
										 |  |  | from tianshou.trainer import onpolicy_trainer | 
					
						
							| 
									
										
										
										
											2020-03-17 11:37:31 +08:00
										 |  |  | from tianshou.data import Batch, Collector, ReplayBuffer | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def compute_return_base(batch, aa=None, bb=None, gamma=0.1): | 
					
						
							|  |  |  |     returns = np.zeros_like(batch.rew) | 
					
						
							|  |  |  |     last = 0 | 
					
						
							|  |  |  |     for i in reversed(range(len(batch.rew))): | 
					
						
							|  |  |  |         returns[i] = batch.rew[i] | 
					
						
							|  |  |  |         if not batch.done[i]: | 
					
						
							|  |  |  |             returns[i] += last * gamma | 
					
						
							|  |  |  |         last = returns[i] | 
					
						
							| 
									
										
										
										
											2020-04-03 21:28:12 +08:00
										 |  |  |     batch.returns = returns | 
					
						
							| 
									
										
										
										
											2020-03-17 11:37:31 +08:00
										 |  |  |     return batch | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def test_fn(size=2560): | 
					
						
							| 
									
										
										
										
											2020-03-17 20:22:37 +08:00
										 |  |  |     policy = PGPolicy(None, None, None, discount_factor=0.1) | 
					
						
							| 
									
										
										
										
											2020-04-09 19:53:45 +08:00
										 |  |  |     buf = ReplayBuffer(100) | 
					
						
							|  |  |  |     buf.add(1, 1, 1, 1, 1) | 
					
						
							| 
									
										
										
										
											2020-03-17 11:37:31 +08:00
										 |  |  |     fn = policy.process_fn | 
					
						
							|  |  |  |     # fn = compute_return_base | 
					
						
							|  |  |  |     batch = Batch( | 
					
						
							|  |  |  |         done=np.array([1, 0, 0, 1, 0, 1, 0, 1.]), | 
					
						
							|  |  |  |         rew=np.array([0, 1, 2, 3, 4, 5, 6, 7.]), | 
					
						
							|  |  |  |     ) | 
					
						
							| 
									
										
										
										
											2020-04-09 19:53:45 +08:00
										 |  |  |     batch = fn(batch, buf, 0) | 
					
						
							| 
									
										
										
										
											2020-03-17 11:37:31 +08:00
										 |  |  |     ans = np.array([0, 1.23, 2.3, 3, 4.5, 5, 6.7, 7]) | 
					
						
							| 
									
										
										
										
											2020-06-17 16:37:51 +08:00
										 |  |  |     assert np.allclose(batch.returns, ans) | 
					
						
							| 
									
										
										
										
											2020-03-17 11:37:31 +08:00
										 |  |  |     batch = Batch( | 
					
						
							|  |  |  |         done=np.array([0, 1, 0, 1, 0, 1, 0.]), | 
					
						
							|  |  |  |         rew=np.array([7, 6, 1, 2, 3, 4, 5.]), | 
					
						
							|  |  |  |     ) | 
					
						
							| 
									
										
										
										
											2020-04-09 19:53:45 +08:00
										 |  |  |     batch = fn(batch, buf, 0) | 
					
						
							| 
									
										
										
										
											2020-03-17 11:37:31 +08:00
										 |  |  |     ans = np.array([7.6, 6, 1.2, 2, 3.4, 4, 5]) | 
					
						
							| 
									
										
										
										
											2020-06-17 16:37:51 +08:00
										 |  |  |     assert np.allclose(batch.returns, ans) | 
					
						
							| 
									
										
										
										
											2020-03-17 11:37:31 +08:00
										 |  |  |     batch = Batch( | 
					
						
							|  |  |  |         done=np.array([0, 1, 0, 1, 0, 0, 1.]), | 
					
						
							|  |  |  |         rew=np.array([7, 6, 1, 2, 3, 4, 5.]), | 
					
						
							|  |  |  |     ) | 
					
						
							| 
									
										
										
										
											2020-04-09 19:53:45 +08:00
										 |  |  |     batch = fn(batch, buf, 0) | 
					
						
							| 
									
										
										
										
											2020-03-17 11:37:31 +08:00
										 |  |  |     ans = np.array([7.6, 6, 1.2, 2, 3.45, 4.5, 5]) | 
					
						
							| 
									
										
										
										
											2020-06-17 16:37:51 +08:00
										 |  |  |     assert np.allclose(batch.returns, ans) | 
					
						
							| 
									
										
										
										
											2020-04-19 14:30:42 +08:00
										 |  |  |     batch = Batch( | 
					
						
							|  |  |  |         done=np.array([0, 0, 0, 1., 0, 0, 0, 1, 0, 0, 0, 1]), | 
					
						
							|  |  |  |         rew=np.array([ | 
					
						
							|  |  |  |             101, 102, 103., 200, 104, 105, 106, 201, 107, 108, 109, 202]) | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     v = np.array([2., 3., 4, -1, 5., 6., 7, -2, 8., 9., 10, -3]) | 
					
						
							|  |  |  |     ret = policy.compute_episodic_return(batch, v, gamma=0.99, gae_lambda=0.95) | 
					
						
							|  |  |  |     returns = np.array([ | 
					
						
							|  |  |  |         454.8344, 376.1143, 291.298, 200., | 
					
						
							|  |  |  |         464.5610, 383.1085, 295.387, 201., | 
					
						
							|  |  |  |         474.2876, 390.1027, 299.476, 202.]) | 
					
						
							| 
									
										
										
										
											2020-06-17 16:37:51 +08:00
										 |  |  |     assert np.allclose(ret.returns, returns) | 
					
						
							| 
									
										
										
										
											2020-03-17 11:37:31 +08:00
										 |  |  |     if __name__ == '__main__': | 
					
						
							|  |  |  |         batch = Batch( | 
					
						
							|  |  |  |             done=np.random.randint(100, size=size) == 0, | 
					
						
							|  |  |  |             rew=np.random.random(size), | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |         cnt = 3000 | 
					
						
							|  |  |  |         t = time.time() | 
					
						
							|  |  |  |         for _ in range(cnt): | 
					
						
							|  |  |  |             compute_return_base(batch) | 
					
						
							|  |  |  |         print(f'vanilla: {(time.time() - t) / cnt}') | 
					
						
							|  |  |  |         t = time.time() | 
					
						
							|  |  |  |         for _ in range(cnt): | 
					
						
							| 
									
										
										
										
											2020-04-09 19:53:45 +08:00
										 |  |  |             policy.process_fn(batch, buf, 0) | 
					
						
							| 
									
										
										
										
											2020-03-17 11:37:31 +08:00
										 |  |  |         print(f'policy: {(time.time() - t) / cnt}') | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def get_args(): | 
					
						
							|  |  |  |     parser = argparse.ArgumentParser() | 
					
						
							|  |  |  |     parser.add_argument('--task', type=str, default='CartPole-v0') | 
					
						
							|  |  |  |     parser.add_argument('--seed', type=int, default=1626) | 
					
						
							|  |  |  |     parser.add_argument('--buffer-size', type=int, default=20000) | 
					
						
							| 
									
										
										
										
											2020-03-17 15:16:30 +08:00
										 |  |  |     parser.add_argument('--lr', type=float, default=3e-4) | 
					
						
							| 
									
										
										
										
											2020-03-17 11:37:31 +08:00
										 |  |  |     parser.add_argument('--gamma', type=float, default=0.9) | 
					
						
							| 
									
										
										
										
											2020-04-14 21:11:06 +08:00
										 |  |  |     parser.add_argument('--epoch', type=int, default=10) | 
					
						
							| 
									
										
										
										
											2020-03-20 19:52:29 +08:00
										 |  |  |     parser.add_argument('--step-per-epoch', type=int, default=1000) | 
					
						
							| 
									
										
										
										
											2020-03-17 15:16:30 +08:00
										 |  |  |     parser.add_argument('--collect-per-step', type=int, default=10) | 
					
						
							| 
									
										
										
										
											2020-03-20 19:52:29 +08:00
										 |  |  |     parser.add_argument('--repeat-per-collect', type=int, default=2) | 
					
						
							| 
									
										
										
										
											2020-03-17 11:37:31 +08:00
										 |  |  |     parser.add_argument('--batch-size', type=int, default=64) | 
					
						
							|  |  |  |     parser.add_argument('--layer-num', type=int, default=3) | 
					
						
							|  |  |  |     parser.add_argument('--training-num', type=int, default=8) | 
					
						
							| 
									
										
										
										
											2020-03-17 15:16:30 +08:00
										 |  |  |     parser.add_argument('--test-num', type=int, default=100) | 
					
						
							| 
									
										
										
										
											2020-03-17 11:37:31 +08:00
										 |  |  |     parser.add_argument('--logdir', type=str, default='log') | 
					
						
							| 
									
										
										
										
											2020-03-28 07:27:18 +08:00
										 |  |  |     parser.add_argument('--render', type=float, default=0.) | 
					
						
							| 
									
										
										
										
											2020-06-03 13:59:47 +08:00
										 |  |  |     parser.add_argument('--rew-norm', type=int, default=1) | 
					
						
							| 
									
										
										
										
											2020-03-17 11:37:31 +08:00
										 |  |  |     parser.add_argument( | 
					
						
							|  |  |  |         '--device', type=str, | 
					
						
							|  |  |  |         default='cuda' if torch.cuda.is_available() else 'cpu') | 
					
						
							|  |  |  |     args = parser.parse_known_args()[0] | 
					
						
							|  |  |  |     return args | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def test_pg(args=get_args()): | 
					
						
							|  |  |  |     env = gym.make(args.task) | 
					
						
							|  |  |  |     args.state_shape = env.observation_space.shape or env.observation_space.n | 
					
						
							|  |  |  |     args.action_shape = env.action_space.shape or env.action_space.n | 
					
						
							|  |  |  |     # train_envs = gym.make(args.task) | 
					
						
							| 
									
										
										
										
											2020-04-03 21:28:12 +08:00
										 |  |  |     # you can also use tianshou.env.SubprocVectorEnv | 
					
						
							| 
									
										
										
										
											2020-03-29 10:22:03 +08:00
										 |  |  |     train_envs = VectorEnv( | 
					
						
							| 
									
										
										
										
											2020-03-25 14:08:28 +08:00
										 |  |  |         [lambda: gym.make(args.task) for _ in range(args.training_num)]) | 
					
						
							| 
									
										
										
										
											2020-03-17 11:37:31 +08:00
										 |  |  |     # test_envs = gym.make(args.task) | 
					
						
							| 
									
										
										
										
											2020-03-29 10:22:03 +08:00
										 |  |  |     test_envs = VectorEnv( | 
					
						
							| 
									
										
										
										
											2020-03-25 14:08:28 +08:00
										 |  |  |         [lambda: gym.make(args.task) for _ in range(args.test_num)]) | 
					
						
							| 
									
										
										
										
											2020-03-17 11:37:31 +08:00
										 |  |  |     # seed | 
					
						
							|  |  |  |     np.random.seed(args.seed) | 
					
						
							|  |  |  |     torch.manual_seed(args.seed) | 
					
						
							|  |  |  |     train_envs.seed(args.seed) | 
					
						
							|  |  |  |     test_envs.seed(args.seed) | 
					
						
							|  |  |  |     # model | 
					
						
							| 
									
										
										
										
											2020-03-21 10:58:01 +08:00
										 |  |  |     net = Net( | 
					
						
							|  |  |  |         args.layer_num, args.state_shape, args.action_shape, | 
					
						
							| 
									
										
										
										
											2020-07-09 22:57:01 +08:00
										 |  |  |         device=args.device, softmax=True).to(args.device) | 
					
						
							| 
									
										
										
										
											2020-03-17 11:37:31 +08:00
										 |  |  |     optim = torch.optim.Adam(net.parameters(), lr=args.lr) | 
					
						
							|  |  |  |     dist = torch.distributions.Categorical | 
					
						
							| 
									
										
										
										
											2020-04-26 16:13:51 +08:00
										 |  |  |     policy = PGPolicy(net, optim, dist, args.gamma, | 
					
						
							|  |  |  |                       reward_normalization=args.rew_norm) | 
					
						
							| 
									
										
										
										
											2020-03-17 11:37:31 +08:00
										 |  |  |     # collector | 
					
						
							| 
									
										
										
										
											2020-03-19 17:23:46 +08:00
										 |  |  |     train_collector = Collector( | 
					
						
							| 
									
										
										
										
											2020-03-17 11:37:31 +08:00
										 |  |  |         policy, train_envs, ReplayBuffer(args.buffer_size)) | 
					
						
							| 
									
										
										
										
											2020-03-23 11:34:52 +08:00
										 |  |  |     test_collector = Collector(policy, test_envs) | 
					
						
							| 
									
										
										
										
											2020-03-17 11:37:31 +08:00
										 |  |  |     # log | 
					
						
							| 
									
										
										
										
											2020-04-11 16:54:27 +08:00
										 |  |  |     log_path = os.path.join(args.logdir, args.task, 'pg') | 
					
						
							|  |  |  |     writer = SummaryWriter(log_path) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def save_fn(policy): | 
					
						
							|  |  |  |         torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth')) | 
					
						
							| 
									
										
										
										
											2020-03-19 17:23:46 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |     def stop_fn(x): | 
					
						
							|  |  |  |         return x >= env.spec.reward_threshold | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # trainer | 
					
						
							| 
									
										
										
										
											2020-03-20 19:52:29 +08:00
										 |  |  |     result = onpolicy_trainer( | 
					
						
							|  |  |  |         policy, train_collector, test_collector, args.epoch, | 
					
						
							|  |  |  |         args.step_per_epoch, args.collect_per_step, args.repeat_per_collect, | 
					
						
							| 
									
										
										
										
											2020-04-11 16:54:27 +08:00
										 |  |  |         args.test_num, args.batch_size, stop_fn=stop_fn, save_fn=save_fn, | 
					
						
							|  |  |  |         writer=writer) | 
					
						
							| 
									
										
										
										
											2020-03-20 19:52:29 +08:00
										 |  |  |     assert stop_fn(result['best_reward']) | 
					
						
							| 
									
										
										
										
											2020-03-19 17:23:46 +08:00
										 |  |  |     train_collector.close() | 
					
						
							| 
									
										
										
										
											2020-03-17 11:37:31 +08:00
										 |  |  |     test_collector.close() | 
					
						
							|  |  |  |     if __name__ == '__main__': | 
					
						
							| 
									
										
										
										
											2020-03-20 19:52:29 +08:00
										 |  |  |         pprint.pprint(result) | 
					
						
							| 
									
										
										
										
											2020-03-17 11:37:31 +08:00
										 |  |  |         # Let's watch its performance! | 
					
						
							|  |  |  |         env = gym.make(args.task) | 
					
						
							| 
									
										
										
										
											2020-03-19 17:23:46 +08:00
										 |  |  |         collector = Collector(policy, env) | 
					
						
							| 
									
										
										
										
											2020-03-28 07:27:18 +08:00
										 |  |  |         result = collector.collect(n_episode=1, render=args.render) | 
					
						
							| 
									
										
										
										
											2020-03-19 17:23:46 +08:00
										 |  |  |         print(f'Final reward: {result["rew"]}, length: {result["len"]}') | 
					
						
							|  |  |  |         collector.close() | 
					
						
							| 
									
										
										
										
											2020-03-17 11:37:31 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | if __name__ == '__main__': | 
					
						
							| 
									
										
										
										
											2020-04-20 11:25:20 +08:00
										 |  |  |     # test_fn() | 
					
						
							| 
									
										
										
										
											2020-03-17 11:37:31 +08:00
										 |  |  |     test_pg() |