33 Commits

Author SHA1 Message Date
Andriy Drozdyuk
18d2f25eff
Remove warnings about the use of save_fn across trainers (#408) 2021-08-04 09:56:00 +08:00
n+e
ebaca6f8da
add vizdoom example, bump version to 0.4.2 (#384) 2021-06-26 18:08:41 +08:00
Ark
84f58636eb
Make trainer resumable (#350)
- specify tensorboard >= 2.5.0
- add `save_checkpoint_fn` and `resume_from_log` in trainer

Co-authored-by: Trinkle23897 <trinkle23897@gmail.com>
2021-05-06 08:53:53 +08:00
n+e
ff4d3cd714
Support different state size and fix exception in venv.__del__ (#352)
- Batch: do not raise error when it finds list of np.array with different shape[0].

- Venv's obs: add try...except block for np.stack(obs_list)

- remove venv.__del__ since it is buggy
2021-04-25 15:23:46 +08:00
n+e
09692c84fe
fix numpy>=1.20 typing check (#323)
Change the behavior of to_numpy and to_torch: from now on, dict is automatically converted to Batch and list is automatically converted to np.ndarray (if an error occurs, raise the exception instead of converting each element in the list).
2021-03-30 16:06:03 +08:00
Trinkle23897
e3ee415b1a temporary fix numpy<1.20.0 (#281) 2021-02-08 12:59:37 +08:00
Jialu Zhu
a511cb4779
Add offline trainer and discrete BCQ algorithm (#263)
The result needs to be tuned after `done` issue fixed.

Co-authored-by: n+e <trinkle23897@gmail.com>
2021-01-20 18:13:04 +08:00
Nico Gürtler
5d13d8a453
Saving and loading replay buffer with HDF5 (#261)
As mentioned in #260, this pull request is about an implementation of saving and loading the replay buffer with HDF5.
2020-12-17 08:58:43 +08:00
n+e
5ed6c1c7aa
change the step in trainer (#235)
This PR separates the `global_step` into `env_step` and `gradient_step`. In the future, the data from the collecting state will be stored under `env_step`, and the data from the updating state will be stored under `gradient_step`.

Others:
- add `rew_std` and `best_result` into the monitor
- fix network unbounded in `test/continuous/test_sac_with_il.py` and `examples/box2d/bipedal_hardcore_sac.py`
- change the dependency of ray to 1.0.0 since ray-project/ray#10134 has been resolved
2020-10-04 21:55:43 +08:00
n+e
b86d78766b
fix docs and add docstring check (#210)
- fix broken links and out-of-the-date content
- add pydocstyle and doc8 check
- remove collector.seed and collector.render
2020-09-11 07:55:37 +08:00
n+e
64af7ea839
fix critical bugs in MAPolicy and docs update (#207)
- fix a bug in MAPolicy: `buffer.rew = Batch()` doesn't change `buffer.rew` (thanks mypy)
- polish examples/box2d/bipedal_hardcore_sac.py
- several docs update
- format setup.py and bump version to 0.2.7
2020-09-08 21:10:48 +08:00
Trinkle23897
34f714a677 Numba acceleration (#193)
Training FPS improvement (base commit is 94bfb32):
test_pdqn: 1660 (without numba) -> 1930
discrete/test_ppo: 5100 -> 5170

since nstep has little impact on overall performance, the unit test result is:
GAE: 4.1s -> 0.057s
nstep: 0.3s -> 0.15s (little improvement)

Others:
- fix a bug in ttt set_eps
- keep only sumtree in segment tree implementation
- dirty fix for asyncVenv check_id test
2020-09-02 13:03:32 +08:00
n+e
94bfb32cc1
optimize training procedure and improve code coverage (#189)
1. add policy.eval() in all test scripts' "watch performance"
2. remove dict return support for collector preprocess_fn
3. add `__contains__` and `pop` in batch: `key in batch`, `batch.pop(key, deft)`
4. exact n_episode for a list of n_episode limitation and save fake data in cache_buffer when self.buffer is None (#184)
5. fix tensorboard logging: h-axis stands for env step instead of gradient step; add test results into tensorboard
6. add test_returns (both GAE and nstep)
7. change the type-checking order in batch.py and converter.py in order to meet the most often case first
8. fix shape inconsistency for torch.Tensor in replay buffer
9. remove `**kwargs` in ReplayBuffer
10. remove default value in batch.split() and add merge_last argument (#185)
11. improve nstep efficiency
12. add max_batchsize in onpolicy algorithms
13. potential bugfix for subproc.wait
14. fix RecurrentActorProb
15. improve the code-coverage (from 90% to 95%) and remove the dead code
16. fix some incorrect type annotation

The above improvement also increases the training FPS: on my computer, the previous version is only ~1800 FPS and after that, it can reach ~2050 (faster than v0.2.4.post1).
2020-08-27 12:15:18 +08:00
youkaichao
a9f9940d17
code refactor for venv (#179)
- Refacor code to remove duplicate code

- Enable async simulation for all vector envs

- Remove `collector.close` and rename `VectorEnv` to `DummyVectorEnv`

The abstraction of vector env changed.

Prior to this pr, each vector env is almost independent.

After this pr, each env is wrapped into a worker, and vector envs differ with their worker type. In fact, users can just use `BaseVectorEnv` with different workers, I keep `SubprocVectorEnv`, `ShmemVectorEnv` for backward compatibility.

Co-authored-by: n+e <463003665@qq.com>
Co-authored-by: magicly <magicly007@gmail.com>
2020-08-19 15:00:24 +08:00
n+e
352a518399
3 fix (#158)
- fix 2 warning in doctest
- change the minimum version of gym (to be aligned with openai baselines)
- change squeeze and reshape to flatten (related to #155). I think flatten is better.
2020-07-23 15:12:02 +08:00
Trinkle23897
69e4b3d301 fix setup err on building docs 2020-04-28 21:11:40 +08:00
Oblivion
9380368ca3
add an example of bullet env (experiment from jiqizhixin) (#15)
* add_pybullet_ens_test

test on pybullet envs
modify some log config

* delete DS_Store file

* add pybullet_envs test

add HalfCheetahBulletEnv-v0 test
modify log config

* fix pep 8 errors

* add pybullet to dev

* delete a line

* by pass F401

* add log_interval to onpolicy_trainer

* add comments

* Update halfcheetahBullet_v0_sac.py
2020-04-04 11:46:18 +08:00
ShenDezhou
4da857d86e
Fix windows env setup bugs and other typo. (#11) 2020-03-31 17:22:32 +08:00
Trinkle23897
57735ce1b5 add logo and sphinx setup 2020-03-28 22:01:23 +08:00
Trinkle23897
c42990c725 add rllib result and fix pep8 2020-03-28 09:43:35 +08:00
Minghao Zhang
77068af526
add examples, fix some bugs (#5)
* update atari.py

* fix setup.py
pass the pytest

* fix setup.py
pass the pytest

* add args "render"

* change the tensorboard writter

* change the tensorboard writter

* change device, render, tensorboard log location

* change device, render, tensorboard log location

* remove some wrong local files

* fix some tab mistakes and the envs name in continuous/test_xx.py

* add examples and point robot maze environment

* fix some bugs during testing examples

* add dqn network and fix some args

* change back the tensorboard writter's frequency to ensure ppo and a2c can write things normally

* add a warning to collector

* rm some unrelated files

* reformat

* fix a bug in test_dqn due to the model wrong selection
2020-03-28 07:27:18 +08:00
Trinkle23897
044aae4355 add baseline and rlpyt result 2020-03-27 16:24:07 +08:00
Minghao Zhang
3c0a09fefd
minor reformat (#2)
* update atari.py

* fix setup.py
pass the pytest

* fix setup.py
pass the pytest
2020-03-26 09:01:20 +08:00
Trinkle23897
64bab0b6a0 ddpg 2020-03-18 21:45:41 +08:00
Trinkle23897
39de63592f finish pg 2020-03-17 11:37:31 +08:00
Trinkle23897
8b0b970c9b add speed stat 2020-03-16 15:04:58 +08:00
Trinkle23897
c804662457 add cache buf in collector 2020-03-14 21:48:31 +08:00
Trinkle23897
f16e05c0e7 maybe finished collector? 2020-03-13 17:49:22 +08:00
Trinkle23897
f58c1397c6 half of collector 2020-03-12 22:20:33 +08:00
Trinkle23897
6632e47b9d add test_buffer 2020-03-11 17:28:51 +08:00
Trinkle23897
5550aed0a1 flake8 fix 2020-03-11 09:38:14 +08:00
Trinkle23897
0dfb900e29 env and data 2020-03-11 09:09:56 +08:00
Trinkle23897
0c944eab68 init 2020-03-09 11:38:04 +08:00