- [x] I have marked all applicable categories:
+ [ ] exception-raising fix
+ [x] algorithm implementation fix
+ [ ] documentation modification
+ [ ] new feature
- [x] I have reformatted the code using `make format` (**required**)
- [x] I have checked the code using `make commit-checks` (**required**)
- [x] If applicable, I have mentioned the relevant/related issue(s)
- [x] If applicable, I have listed every items in this Pull Request
below
While trying to debug Atari PPO+LSTM, I found significant gap between
our Atari PPO example vs [CleanRL's Atari PPO w/
EnvPool](https://docs.cleanrl.dev/rl-algorithms/ppo/#ppo_atari_envpoolpy).
I tried to align our implementation with CleaRL's version, mostly in
hyper parameter choices, and got significant gain in Breakout, Qbert,
SpaceInvaders while on par in other games. After this fix, I would
suggest updating our [Atari
Benchmark](https://tianshou.readthedocs.io/en/master/tutorials/benchmark.html)
PPO experiments.
A few interesting findings:
- Layer initialization helps stabilize the training and enable the use
of larger learning rates; without it, larger learning rates will trigger
NaN gradient very quickly;
- ppo.py#L97-L101: this change helps training stability for reasons I do
not understand; also it makes the GPU usage higher.
Shoutout to [CleanRL](https://github.com/vwxyzjn/cleanrl) for a
well-tuned Atari PPO reference implementation!
This is the PR for QR-DQN algorithm: https://arxiv.org/abs/1710.10044
1. add QR-DQN policy in tianshou/policy/modelfree/qrdqn.py.
2. add QR-DQN net in examples/atari/atari_network.py.
3. add QR-DQN atari example in examples/atari/atari_qrdqn.py.
4. add QR-DQN statement in tianshou/policy/init.py.
5. add QR-DQN unit test in test/discrete/test_qrdqn.py.
6. add QR-DQN atari results in examples/atari/results/qrdqn/.
7. add compute_q_value in DQNPolicy and C51Policy for simplify forward function.
8. move `with torch.no_grad():` from `_target_q` to BasePolicy
By running "python3 atari_qrdqn.py --task "PongNoFrameskip-v4" --batch-size 64", get best_result': '19.8 ± 0.40', in epoch 8.
This is the first commit of 6 commits mentioned in #274, which features
1. Refactor of `Class Net` to support any form of MLP.
2. Enable type check in utils.network.
3. Relative change in docs/test/examples.
4. Move atari-related network to examples/atari/atari_network.py
Co-authored-by: Trinkle23897 <trinkle23897@gmail.com>