TrulyPPO/README.md
2020-01-28 11:31:04 +08:00

42 lines
1.0 KiB
Markdown

# Truly Proximal Policy Optimization
Source code for the paper: [Truly Proximal Policy Optmization](https://arxiv.org/abs/1903.07940). The original code was forked from [OpenAI baselines](https://github.com/openai/baselines).
Method is tested on [MuJoCo](http://www.mujoco.org/) continuous control tasks and [Atari](https://www.atari.com/) discrete game tasks in [OpenAI gym](https://github.com/openai/gym).
Networks are trained using [tensorflow1.10](https://www.tensorflow.org/) and Python 3.6.
# Installation
```
git clone --recursive https://github.com/wangyuhuix/TrulyPPO
cd TrulyPPO
pip install -r requirements.txt
```
# Usage
### Command Line arguments
* env: environment ID
* seed: random seed
* num_timesteps: number of timesteps
### Continuous Task
```shell
python -m baselines.ppo2_AdaClip.run --alg=trulyppo --env=InvertedPendulum-v2 --seed=0
```
You can try `--alg=pporb` for PPO-RB and `--alg-trppo` for TR-PPO.
### Discrete Task
```
python -m baselines.ppo2_AdaClip.run --alg=trulyppo --env=BeamRiderNoFrameskip-v4 --seed=0 --isatari
```