2023-05-17 22:16:55 +09:00
2023-05-14 23:38:46 +09:00
2023-04-29 07:30:34 +09:00
2023-05-17 22:16:55 +09:00
2023-05-14 23:38:46 +09:00
2023-05-14 23:38:46 +09:00
2023-02-12 22:35:25 +09:00
2023-05-14 23:38:46 +09:00
2023-05-14 23:38:46 +09:00
2023-05-14 23:38:46 +09:00
2023-04-15 23:16:43 +09:00
2023-05-14 23:38:46 +09:00

dreamerv3-torch

Pytorch implementation of Mastering Diverse Domains through World Models. DreamerV3 is a scalable algorithm that outperforms previous approaches across various domains with fixed hyperparameters.

Instructions

Get dependencies:

pip install -r requirements.txt

Train the agent on Walker Walk in DMC Vision:

python3 dreamer.py --configs dmc_vision --task dmc_walker_walk --logdir ./logdir/dmc_walker_walk

Train the agent on Walker Walk in DMC Proprio:

python3 dreamer.py --configs dmc_proprio --task dmc_walker_walk --logdir ./logdir/dmc_walker_walk

Train the agent on Alien in Atari 100K:

python3 dreamer.py --configs atari100k --task atari_alien --logdir ./logdir/atari_alien

Monitor results:

tensorboard --logdir ~/dreamerv3-torch/logdir

Results

More results will be added in the future.

dmc_vision atari100k

ToDo

  • Prototyping
  • Modify implementation details based on the author's implementation
  • Evaluate on DMC vision
  • Evaluate on Atari 100K
  • Add state input capability
  • Evaluate on DMC Proprio
  • etc.

Acknowledgments

This code is heavily inspired by the following works:

Description
No description provided
Readme MIT 2.9 MiB
Languages
Python 98.6%
Dockerfile 0.9%
Shell 0.5%