dreamerv3-torch/exploration.py
2023-02-12 22:35:25 +09:00

109 lines
3.8 KiB
Python

import torch
from torch import nn
from torch import distributions as torchd
import models
import networks
import tools
class Random(nn.Module):
def __init__(self, config):
self._config = config
def actor(self, feat):
shape = feat.shape[:-1] + [self._config.num_actions]
if self._config.actor_dist == "onehot":
return tools.OneHotDist(torch.zeros(shape))
else:
ones = torch.ones(shape)
return tools.ContDist(torchd.uniform.Uniform(-ones, ones))
def train(self, start, context):
return None, {}
# class Plan2Explore(tools.Module):
class Plan2Explore(nn.Module):
def __init__(self, config, world_model, reward=None):
self._config = config
self._reward = reward
self._behavior = models.ImagBehavior(config, world_model)
self.actor = self._behavior.actor
stoch_size = config.dyn_stoch
if config.dyn_discrete:
stoch_size *= config.dyn_discrete
size = {
"embed": 32 * config.cnn_depth,
"stoch": stoch_size,
"deter": config.dyn_deter,
"feat": config.dyn_stoch + config.dyn_deter,
}[self._config.disag_target]
kw = dict(
inp_dim=config.dyn_stoch, # pytorch version
shape=size,
layers=config.disag_layers,
units=config.disag_units,
act=config.act,
)
self._networks = [networks.DenseHead(**kw) for _ in range(config.disag_models)]
self._opt = tools.optimizer(
config.opt,
self.parameters(),
config.model_lr,
config.opt_eps,
config.weight_decay,
)
# self._opt = tools.Optimizer(
# 'ensemble', config.model_lr, config.opt_eps, config.grad_clip,
# config.weight_decay, opt=config.opt)
def train(self, start, context, data):
metrics = {}
stoch = start["stoch"]
if self._config.dyn_discrete:
stoch = tf.reshape(
stoch, stoch.shape[:-2] + (stoch.shape[-2] * stoch.shape[-1])
)
target = {
"embed": context["embed"],
"stoch": stoch,
"deter": start["deter"],
"feat": context["feat"],
}[self._config.disag_target]
inputs = context["feat"]
if self._config.disag_action_cond:
inputs = tf.concat([inputs, data["action"]], -1)
metrics.update(self._train_ensemble(inputs, target))
metrics.update(self._behavior.train(start, self._intrinsic_reward)[-1])
return None, metrics
def _intrinsic_reward(self, feat, state, action):
inputs = feat
if self._config.disag_action_cond:
inputs = tf.concat([inputs, action], -1)
preds = [head(inputs, tf.float32).mean() for head in self._networks]
disag = tf.reduce_mean(tf.math.reduce_std(preds, 0), -1)
if self._config.disag_log:
disag = tf.math.log(disag)
reward = self._config.expl_intr_scale * disag
if self._config.expl_extr_scale:
reward += tf.cast(
self._config.expl_extr_scale * self._reward(feat, state, action),
tf.float32,
)
return reward
def _train_ensemble(self, inputs, targets):
if self._config.disag_offset:
targets = targets[:, self._config.disag_offset :]
inputs = inputs[:, : -self._config.disag_offset]
targets = tf.stop_gradient(targets)
inputs = tf.stop_gradient(inputs)
with tf.GradientTape() as tape:
preds = [head(inputs) for head in self._networks]
likes = [tf.reduce_mean(pred.log_prob(targets)) for pred in preds]
loss = -tf.cast(tf.reduce_sum(likes), tf.float32)
metrics = self._opt(tape, loss, self._networks)
return metrics