Tianshou/test/discrete/test_a2c_with_il.py

178 lines
6.5 KiB
Python
Raw Normal View History

import argparse
2020-04-11 16:54:27 +08:00
import os
2020-03-20 19:52:29 +08:00
import pprint
import gym
2020-03-17 20:22:37 +08:00
import numpy as np
import torch
2020-03-17 20:22:37 +08:00
from torch.utils.tensorboard import SummaryWriter
from tianshou.data import Collector, VectorReplayBuffer
from tianshou.env import DummyVectorEnv
from tianshou.policy import A2CPolicy, ImitationPolicy
from tianshou.trainer import offpolicy_trainer, onpolicy_trainer
from tianshou.utils import TensorboardLogger
from tianshou.utils.net.common import Net
from tianshou.utils.net.discrete import Actor, Critic
2020-03-17 20:22:37 +08:00
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--task', type=str, default='CartPole-v0')
2020-05-16 20:08:32 +08:00
parser.add_argument('--seed', type=int, default=1)
2020-03-17 20:22:37 +08:00
parser.add_argument('--buffer-size', type=int, default=20000)
parser.add_argument('--lr', type=float, default=1e-3)
2020-04-20 11:25:20 +08:00
parser.add_argument('--il-lr', type=float, default=1e-3)
2020-03-17 20:22:37 +08:00
parser.add_argument('--gamma', type=float, default=0.9)
2020-04-14 21:11:06 +08:00
parser.add_argument('--epoch', type=int, default=10)
parser.add_argument('--step-per-epoch', type=int, default=50000)
parser.add_argument('--il-step-per-epoch', type=int, default=1000)
parser.add_argument('--episode-per-collect', type=int, default=16)
parser.add_argument('--step-per-collect', type=int, default=16)
parser.add_argument('--update-per-step', type=float, default=1 / 16)
2020-03-20 19:52:29 +08:00
parser.add_argument('--repeat-per-collect', type=int, default=1)
2020-03-17 20:22:37 +08:00
parser.add_argument('--batch-size', type=int, default=64)
parser.add_argument('--hidden-sizes', type=int, nargs='*', default=[64, 64])
parser.add_argument('--imitation-hidden-sizes', type=int, nargs='*', default=[128])
parser.add_argument('--training-num', type=int, default=16)
2020-03-17 20:22:37 +08:00
parser.add_argument('--test-num', type=int, default=100)
parser.add_argument('--logdir', type=str, default='log')
parser.add_argument('--render', type=float, default=0.)
2020-03-17 20:22:37 +08:00
parser.add_argument(
'--device', type=str, default='cuda' if torch.cuda.is_available() else 'cpu'
)
2020-03-17 20:22:37 +08:00
# a2c special
parser.add_argument('--vf-coef', type=float, default=0.5)
2020-06-03 13:59:47 +08:00
parser.add_argument('--ent-coef', type=float, default=0.0)
2020-03-18 21:45:41 +08:00
parser.add_argument('--max-grad-norm', type=float, default=None)
2020-04-14 21:11:06 +08:00
parser.add_argument('--gae-lambda', type=float, default=1.)
parser.add_argument('--rew-norm', action="store_true", default=False)
2020-03-17 20:22:37 +08:00
args = parser.parse_known_args()[0]
return args
2020-05-16 20:08:32 +08:00
def test_a2c_with_il(args=get_args()):
2020-04-03 21:28:12 +08:00
torch.set_num_threads(1) # for poor CPU
2020-03-17 20:22:37 +08:00
env = gym.make(args.task)
args.state_shape = env.observation_space.shape or env.observation_space.n
args.action_shape = env.action_space.shape or env.action_space.n
2020-04-03 21:28:12 +08:00
# you can also use tianshou.env.SubprocVectorEnv
2020-03-17 20:22:37 +08:00
# train_envs = gym.make(args.task)
train_envs = DummyVectorEnv(
[lambda: gym.make(args.task) for _ in range(args.training_num)]
)
2020-03-17 20:22:37 +08:00
# test_envs = gym.make(args.task)
test_envs = DummyVectorEnv(
[lambda: gym.make(args.task) for _ in range(args.test_num)]
)
2020-03-17 20:22:37 +08:00
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
train_envs.seed(args.seed)
test_envs.seed(args.seed)
# model
net = Net(args.state_shape, hidden_sizes=args.hidden_sizes, device=args.device)
actor = Actor(net, args.action_shape, device=args.device).to(args.device)
critic = Critic(net, device=args.device).to(args.device)
optim = torch.optim.Adam(
set(actor.parameters()).union(critic.parameters()), lr=args.lr
)
2020-03-17 20:22:37 +08:00
dist = torch.distributions.Categorical
policy = A2CPolicy(
actor,
critic,
optim,
dist,
discount_factor=args.gamma,
gae_lambda=args.gae_lambda,
vf_coef=args.vf_coef,
ent_coef=args.ent_coef,
max_grad_norm=args.max_grad_norm,
reward_normalization=args.rew_norm,
action_space=env.action_space
)
2020-03-17 20:22:37 +08:00
# collector
2020-03-19 17:23:46 +08:00
train_collector = Collector(
policy, train_envs, VectorReplayBuffer(args.buffer_size, len(train_envs))
)
2020-03-23 11:34:52 +08:00
test_collector = Collector(policy, test_envs)
2020-03-17 20:22:37 +08:00
# log
2020-04-11 16:54:27 +08:00
log_path = os.path.join(args.logdir, args.task, 'a2c')
writer = SummaryWriter(log_path)
logger = TensorboardLogger(writer)
2020-04-11 16:54:27 +08:00
def save_fn(policy):
torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))
2020-03-19 17:23:46 +08:00
def stop_fn(mean_rewards):
return mean_rewards >= env.spec.reward_threshold
2020-03-19 17:23:46 +08:00
# trainer
2020-03-20 19:52:29 +08:00
result = onpolicy_trainer(
policy,
train_collector,
test_collector,
args.epoch,
args.step_per_epoch,
args.repeat_per_collect,
args.test_num,
args.batch_size,
episode_per_collect=args.episode_per_collect,
stop_fn=stop_fn,
save_fn=save_fn,
logger=logger
)
2020-03-20 19:52:29 +08:00
assert stop_fn(result['best_reward'])
2020-03-17 20:22:37 +08:00
if __name__ == '__main__':
2020-03-20 19:52:29 +08:00
pprint.pprint(result)
2020-03-17 20:22:37 +08:00
# Let's watch its performance!
env = gym.make(args.task)
policy.eval()
2020-03-19 17:23:46 +08:00
collector = Collector(policy, env)
result = collector.collect(n_episode=1, render=args.render)
rews, lens = result["rews"], result["lens"]
print(f"Final reward: {rews.mean()}, length: {lens.mean()}")
2020-03-17 20:22:37 +08:00
policy.eval()
2020-04-20 11:25:20 +08:00
# here we define an imitation collector with a trivial policy
2020-05-16 20:08:32 +08:00
if args.task == 'CartPole-v0':
env.spec.reward_threshold = 190 # lower the goal
net = Net(args.state_shape, hidden_sizes=args.hidden_sizes, device=args.device)
net = Actor(net, args.action_shape, device=args.device).to(args.device)
2020-04-20 11:25:20 +08:00
optim = torch.optim.Adam(net.parameters(), lr=args.il_lr)
il_policy = ImitationPolicy(net, optim, action_space=env.action_space)
il_test_collector = Collector(
il_policy,
DummyVectorEnv([lambda: gym.make(args.task) for _ in range(args.test_num)])
)
2020-04-20 11:25:20 +08:00
train_collector.reset()
result = offpolicy_trainer(
il_policy,
train_collector,
il_test_collector,
args.epoch,
args.il_step_per_epoch,
args.step_per_collect,
args.test_num,
args.batch_size,
stop_fn=stop_fn,
save_fn=save_fn,
logger=logger
)
2020-04-20 11:25:20 +08:00
assert stop_fn(result['best_reward'])
2020-04-20 11:25:20 +08:00
if __name__ == '__main__':
pprint.pprint(result)
# Let's watch its performance!
env = gym.make(args.task)
il_policy.eval()
2020-04-20 11:25:20 +08:00
collector = Collector(il_policy, env)
result = collector.collect(n_episode=1, render=args.render)
rews, lens = result["rews"], result["lens"]
print(f"Final reward: {rews.mean()}, length: {lens.mean()}")
2020-04-20 11:25:20 +08:00
2020-03-17 20:22:37 +08:00
if __name__ == '__main__':
2020-05-16 20:08:32 +08:00
test_a2c_with_il()