2021-09-03 05:05:04 +08:00
|
|
|
import argparse
|
2020-04-05 09:10:21 +08:00
|
|
|
import os
|
2020-03-21 17:04:42 +08:00
|
|
|
import pprint
|
2021-09-03 05:05:04 +08:00
|
|
|
|
|
|
|
import gym
|
2020-03-21 17:04:42 +08:00
|
|
|
import numpy as np
|
2021-09-03 05:05:04 +08:00
|
|
|
import torch
|
2020-09-12 08:44:50 +08:00
|
|
|
from torch.distributions import Independent, Normal
|
2021-09-03 05:05:04 +08:00
|
|
|
from torch.utils.tensorboard import SummaryWriter
|
2020-03-21 17:04:42 +08:00
|
|
|
|
2021-09-03 05:05:04 +08:00
|
|
|
from tianshou.data import Collector, VectorReplayBuffer
|
|
|
|
from tianshou.env import DummyVectorEnv
|
2020-04-14 21:11:06 +08:00
|
|
|
from tianshou.policy import PPOPolicy
|
2021-09-03 05:05:04 +08:00
|
|
|
from tianshou.trainer import onpolicy_trainer
|
2021-08-30 10:35:02 -04:00
|
|
|
from tianshou.utils import TensorboardLogger
|
2021-10-04 11:19:07 -04:00
|
|
|
from tianshou.utils.net.common import ActorCritic, Net
|
2020-07-09 22:57:01 +08:00
|
|
|
from tianshou.utils.net.continuous import ActorProb, Critic
|
2020-03-21 17:04:42 +08:00
|
|
|
|
|
|
|
|
|
|
|
def get_args():
|
|
|
|
parser = argparse.ArgumentParser()
|
|
|
|
parser.add_argument('--task', type=str, default='Pendulum-v0')
|
2021-01-29 12:23:18 +08:00
|
|
|
parser.add_argument('--seed', type=int, default=1)
|
2020-03-21 17:04:42 +08:00
|
|
|
parser.add_argument('--buffer-size', type=int, default=20000)
|
2020-04-14 21:11:06 +08:00
|
|
|
parser.add_argument('--lr', type=float, default=1e-3)
|
2021-03-30 11:50:35 +08:00
|
|
|
parser.add_argument('--gamma', type=float, default=0.95)
|
2021-02-27 11:20:43 +08:00
|
|
|
parser.add_argument('--epoch', type=int, default=5)
|
2021-02-21 13:06:02 +08:00
|
|
|
parser.add_argument('--step-per-epoch', type=int, default=150000)
|
|
|
|
parser.add_argument('--episode-per-collect', type=int, default=16)
|
2020-04-14 21:11:06 +08:00
|
|
|
parser.add_argument('--repeat-per-collect', type=int, default=2)
|
2020-04-19 14:30:42 +08:00
|
|
|
parser.add_argument('--batch-size', type=int, default=128)
|
2021-03-30 11:50:35 +08:00
|
|
|
parser.add_argument('--hidden-sizes', type=int, nargs='*', default=[64, 64])
|
2020-04-19 14:30:42 +08:00
|
|
|
parser.add_argument('--training-num', type=int, default=16)
|
2020-03-21 17:04:42 +08:00
|
|
|
parser.add_argument('--test-num', type=int, default=100)
|
|
|
|
parser.add_argument('--logdir', type=str, default='log')
|
2020-03-28 07:27:18 +08:00
|
|
|
parser.add_argument('--render', type=float, default=0.)
|
2020-03-21 17:04:42 +08:00
|
|
|
parser.add_argument(
|
2021-09-03 05:05:04 +08:00
|
|
|
'--device', type=str, default='cuda' if torch.cuda.is_available() else 'cpu'
|
|
|
|
)
|
2020-03-21 17:04:42 +08:00
|
|
|
# ppo special
|
2021-03-30 11:50:35 +08:00
|
|
|
parser.add_argument('--vf-coef', type=float, default=0.25)
|
|
|
|
parser.add_argument('--ent-coef', type=float, default=0.0)
|
2020-03-21 17:04:42 +08:00
|
|
|
parser.add_argument('--eps-clip', type=float, default=0.2)
|
|
|
|
parser.add_argument('--max-grad-norm', type=float, default=0.5)
|
2020-04-14 21:11:06 +08:00
|
|
|
parser.add_argument('--gae-lambda', type=float, default=0.95)
|
2020-06-03 13:59:47 +08:00
|
|
|
parser.add_argument('--rew-norm', type=int, default=1)
|
|
|
|
parser.add_argument('--dual-clip', type=float, default=None)
|
|
|
|
parser.add_argument('--value-clip', type=int, default=1)
|
2021-03-30 11:50:35 +08:00
|
|
|
parser.add_argument('--norm-adv', type=int, default=1)
|
|
|
|
parser.add_argument('--recompute-adv', type=int, default=0)
|
2021-05-06 08:53:53 +08:00
|
|
|
parser.add_argument('--resume', action="store_true")
|
|
|
|
parser.add_argument("--save-interval", type=int, default=4)
|
2020-03-21 17:04:42 +08:00
|
|
|
args = parser.parse_known_args()[0]
|
|
|
|
return args
|
|
|
|
|
|
|
|
|
2020-04-19 14:30:42 +08:00
|
|
|
def test_ppo(args=get_args()):
|
2020-03-21 17:04:42 +08:00
|
|
|
env = gym.make(args.task)
|
|
|
|
if args.task == 'Pendulum-v0':
|
|
|
|
env.spec.reward_threshold = -250
|
|
|
|
args.state_shape = env.observation_space.shape or env.observation_space.n
|
|
|
|
args.action_shape = env.action_space.shape or env.action_space.n
|
|
|
|
args.max_action = env.action_space.high[0]
|
2020-04-03 21:28:12 +08:00
|
|
|
# you can also use tianshou.env.SubprocVectorEnv
|
2020-03-21 17:04:42 +08:00
|
|
|
# train_envs = gym.make(args.task)
|
2020-08-19 15:00:24 +08:00
|
|
|
train_envs = DummyVectorEnv(
|
2021-09-03 05:05:04 +08:00
|
|
|
[lambda: gym.make(args.task) for _ in range(args.training_num)]
|
|
|
|
)
|
2020-03-21 17:04:42 +08:00
|
|
|
# test_envs = gym.make(args.task)
|
2020-08-19 15:00:24 +08:00
|
|
|
test_envs = DummyVectorEnv(
|
2021-09-03 05:05:04 +08:00
|
|
|
[lambda: gym.make(args.task) for _ in range(args.test_num)]
|
|
|
|
)
|
2020-03-21 17:04:42 +08:00
|
|
|
# seed
|
|
|
|
np.random.seed(args.seed)
|
|
|
|
torch.manual_seed(args.seed)
|
|
|
|
train_envs.seed(args.seed)
|
|
|
|
test_envs.seed(args.seed)
|
|
|
|
# model
|
2021-09-03 05:05:04 +08:00
|
|
|
net = Net(args.state_shape, hidden_sizes=args.hidden_sizes, device=args.device)
|
|
|
|
actor = ActorProb(
|
|
|
|
net, args.action_shape, max_action=args.max_action, device=args.device
|
|
|
|
).to(args.device)
|
|
|
|
critic = Critic(
|
|
|
|
Net(args.state_shape, hidden_sizes=args.hidden_sizes, device=args.device),
|
|
|
|
device=args.device
|
|
|
|
).to(args.device)
|
2021-10-04 11:19:07 -04:00
|
|
|
actor_critic = ActorCritic(actor, critic)
|
2020-05-16 20:27:01 +08:00
|
|
|
# orthogonal initialization
|
2021-10-04 11:19:07 -04:00
|
|
|
for m in actor_critic.modules():
|
2020-05-16 20:27:01 +08:00
|
|
|
if isinstance(m, torch.nn.Linear):
|
|
|
|
torch.nn.init.orthogonal_(m.weight)
|
2020-05-17 17:06:20 +08:00
|
|
|
torch.nn.init.zeros_(m.bias)
|
2021-10-04 11:19:07 -04:00
|
|
|
optim = torch.optim.Adam(actor_critic.parameters(), lr=args.lr)
|
2020-09-12 08:44:50 +08:00
|
|
|
|
|
|
|
# replace DiagGuassian with Independent(Normal) which is equivalent
|
|
|
|
# pass *logits to be consistent with policy.forward
|
|
|
|
def dist(*logits):
|
|
|
|
return Independent(Normal(*logits), 1)
|
2021-03-30 11:50:35 +08:00
|
|
|
|
2020-03-21 17:04:42 +08:00
|
|
|
policy = PPOPolicy(
|
2021-09-03 05:05:04 +08:00
|
|
|
actor,
|
|
|
|
critic,
|
|
|
|
optim,
|
|
|
|
dist,
|
2021-03-23 22:05:48 +08:00
|
|
|
discount_factor=args.gamma,
|
2020-03-21 17:04:42 +08:00
|
|
|
max_grad_norm=args.max_grad_norm,
|
|
|
|
eps_clip=args.eps_clip,
|
|
|
|
vf_coef=args.vf_coef,
|
|
|
|
ent_coef=args.ent_coef,
|
2020-04-19 14:30:42 +08:00
|
|
|
reward_normalization=args.rew_norm,
|
2021-03-30 11:50:35 +08:00
|
|
|
advantage_normalization=args.norm_adv,
|
|
|
|
recompute_advantage=args.recompute_adv,
|
2020-05-18 16:23:35 +08:00
|
|
|
# dual_clip=args.dual_clip,
|
|
|
|
# dual clip cause monotonically increasing log_std :)
|
2020-04-19 14:30:42 +08:00
|
|
|
value_clip=args.value_clip,
|
2021-03-21 16:45:50 +08:00
|
|
|
gae_lambda=args.gae_lambda,
|
2021-09-03 05:05:04 +08:00
|
|
|
action_space=env.action_space
|
|
|
|
)
|
2020-03-21 17:04:42 +08:00
|
|
|
# collector
|
|
|
|
train_collector = Collector(
|
2021-09-03 05:05:04 +08:00
|
|
|
policy, train_envs, VectorReplayBuffer(args.buffer_size, len(train_envs))
|
|
|
|
)
|
2020-03-23 11:34:52 +08:00
|
|
|
test_collector = Collector(policy, test_envs)
|
2020-03-21 17:04:42 +08:00
|
|
|
# log
|
2020-04-11 16:54:27 +08:00
|
|
|
log_path = os.path.join(args.logdir, args.task, 'ppo')
|
2020-04-05 09:10:21 +08:00
|
|
|
writer = SummaryWriter(log_path)
|
2021-08-30 10:35:02 -04:00
|
|
|
logger = TensorboardLogger(writer, save_interval=args.save_interval)
|
2020-03-21 17:04:42 +08:00
|
|
|
|
2020-04-11 16:54:27 +08:00
|
|
|
def save_fn(policy):
|
|
|
|
torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))
|
|
|
|
|
2020-09-26 16:35:37 +08:00
|
|
|
def stop_fn(mean_rewards):
|
|
|
|
return mean_rewards >= env.spec.reward_threshold
|
2020-03-21 17:04:42 +08:00
|
|
|
|
2021-05-06 08:53:53 +08:00
|
|
|
def save_checkpoint_fn(epoch, env_step, gradient_step):
|
|
|
|
# see also: https://pytorch.org/tutorials/beginner/saving_loading_models.html
|
2021-09-03 05:05:04 +08:00
|
|
|
torch.save(
|
|
|
|
{
|
|
|
|
'model': policy.state_dict(),
|
|
|
|
'optim': optim.state_dict(),
|
|
|
|
}, os.path.join(log_path, 'checkpoint.pth')
|
|
|
|
)
|
2021-05-06 08:53:53 +08:00
|
|
|
|
|
|
|
if args.resume:
|
|
|
|
# load from existing checkpoint
|
|
|
|
print(f"Loading agent under {log_path}")
|
|
|
|
ckpt_path = os.path.join(log_path, 'checkpoint.pth')
|
|
|
|
if os.path.exists(ckpt_path):
|
|
|
|
checkpoint = torch.load(ckpt_path, map_location=args.device)
|
|
|
|
policy.load_state_dict(checkpoint['model'])
|
|
|
|
optim.load_state_dict(checkpoint['optim'])
|
|
|
|
print("Successfully restore policy and optim.")
|
|
|
|
else:
|
|
|
|
print("Fail to restore policy and optim.")
|
|
|
|
|
2020-03-21 17:04:42 +08:00
|
|
|
# trainer
|
|
|
|
result = onpolicy_trainer(
|
2021-09-03 05:05:04 +08:00
|
|
|
policy,
|
|
|
|
train_collector,
|
|
|
|
test_collector,
|
|
|
|
args.epoch,
|
|
|
|
args.step_per_epoch,
|
|
|
|
args.repeat_per_collect,
|
|
|
|
args.test_num,
|
|
|
|
args.batch_size,
|
|
|
|
episode_per_collect=args.episode_per_collect,
|
|
|
|
stop_fn=stop_fn,
|
|
|
|
save_fn=save_fn,
|
|
|
|
logger=logger,
|
|
|
|
resume_from_log=args.resume,
|
|
|
|
save_checkpoint_fn=save_checkpoint_fn
|
|
|
|
)
|
2020-03-21 17:04:42 +08:00
|
|
|
assert stop_fn(result['best_reward'])
|
2021-05-06 08:53:53 +08:00
|
|
|
|
2020-03-21 17:04:42 +08:00
|
|
|
if __name__ == '__main__':
|
|
|
|
pprint.pprint(result)
|
|
|
|
# Let's watch its performance!
|
|
|
|
env = gym.make(args.task)
|
2020-08-27 12:15:18 +08:00
|
|
|
policy.eval()
|
2020-03-21 17:04:42 +08:00
|
|
|
collector = Collector(policy, env)
|
2020-03-28 07:27:18 +08:00
|
|
|
result = collector.collect(n_episode=1, render=args.render)
|
2021-02-19 10:33:49 +08:00
|
|
|
rews, lens = result["rews"], result["lens"]
|
|
|
|
print(f"Final reward: {rews.mean()}, length: {lens.mean()}")
|
2020-03-21 17:04:42 +08:00
|
|
|
|
|
|
|
|
2021-05-06 08:53:53 +08:00
|
|
|
def test_ppo_resume(args=get_args()):
|
|
|
|
args.resume = True
|
|
|
|
test_ppo(args)
|
|
|
|
|
|
|
|
|
2020-03-21 17:04:42 +08:00
|
|
|
if __name__ == '__main__':
|
2020-04-19 14:30:42 +08:00
|
|
|
test_ppo()
|