Tianshou/test/continuous/test_sac_with_il.py

206 lines
7.1 KiB
Python
Raw Normal View History

import argparse
import os
2020-03-23 17:17:41 +08:00
import numpy as np
import pytest
import torch
2020-03-23 17:17:41 +08:00
from torch.utils.tensorboard import SummaryWriter
from tianshou.data import Collector, VectorReplayBuffer
from tianshou.policy import ImitationPolicy, SACPolicy
2020-03-23 17:17:41 +08:00
from tianshou.trainer import offpolicy_trainer
from tianshou.utils import TensorboardLogger
from tianshou.utils.net.common import Net
from tianshou.utils.net.continuous import Actor, ActorProb, Critic
2020-03-23 17:17:41 +08:00
try:
import envpool
except ImportError:
envpool = None
2020-03-23 17:17:41 +08:00
def get_args():
parser = argparse.ArgumentParser()
2022-07-04 10:07:16 -07:00
parser.add_argument('--task', type=str, default='Pendulum-v1')
2022-03-04 03:35:39 +01:00
parser.add_argument('--reward-threshold', type=float, default=None)
parser.add_argument('--seed', type=int, default=1)
2020-03-23 17:17:41 +08:00
parser.add_argument('--buffer-size', type=int, default=20000)
parser.add_argument('--actor-lr', type=float, default=1e-3)
2020-03-23 17:17:41 +08:00
parser.add_argument('--critic-lr', type=float, default=1e-3)
2020-04-13 19:37:27 +08:00
parser.add_argument('--il-lr', type=float, default=1e-3)
2020-03-23 17:17:41 +08:00
parser.add_argument('--gamma', type=float, default=0.99)
parser.add_argument('--tau', type=float, default=0.005)
parser.add_argument('--alpha', type=float, default=0.2)
parser.add_argument('--auto-alpha', type=int, default=1)
parser.add_argument('--alpha-lr', type=float, default=3e-4)
parser.add_argument('--epoch', type=int, default=5)
parser.add_argument('--step-per-epoch', type=int, default=24000)
parser.add_argument('--il-step-per-epoch', type=int, default=500)
parser.add_argument('--step-per-collect', type=int, default=10)
parser.add_argument('--update-per-step', type=float, default=0.1)
2020-03-23 17:17:41 +08:00
parser.add_argument('--batch-size', type=int, default=128)
parser.add_argument('--hidden-sizes', type=int, nargs='*', default=[128, 128])
parser.add_argument(
'--imitation-hidden-sizes', type=int, nargs='*', default=[128, 128]
)
parser.add_argument('--training-num', type=int, default=10)
2020-03-23 17:17:41 +08:00
parser.add_argument('--test-num', type=int, default=100)
parser.add_argument('--logdir', type=str, default='log')
parser.add_argument('--render', type=float, default=0.)
parser.add_argument('--rew-norm', action="store_true", default=False)
parser.add_argument('--n-step', type=int, default=3)
2020-03-23 17:17:41 +08:00
parser.add_argument(
'--device', type=str, default='cuda' if torch.cuda.is_available() else 'cpu'
)
2020-03-23 17:17:41 +08:00
args = parser.parse_known_args()[0]
return args
@pytest.mark.skipif(envpool is None, reason="EnvPool doesn't support this platform")
2020-04-13 19:37:27 +08:00
def test_sac_with_il(args=get_args()):
# if you want to use python vector env, please refer to other test scripts
train_envs = env = envpool.make_gymnasium(
args.task, num_envs=args.training_num, seed=args.seed
)
test_envs = envpool.make_gymnasium(
args.task, num_envs=args.test_num, seed=args.seed
)
2020-03-23 17:17:41 +08:00
args.state_shape = env.observation_space.shape or env.observation_space.n
args.action_shape = env.action_space.shape or env.action_space.n
args.max_action = env.action_space.high[0]
2022-03-04 03:35:39 +01:00
if args.reward_threshold is None:
default_reward_threshold = {"Pendulum-v0": -250, "Pendulum-v1": -250}
args.reward_threshold = default_reward_threshold.get(
args.task, env.spec.reward_threshold
)
2020-04-03 21:28:12 +08:00
# you can also use tianshou.env.SubprocVectorEnv
2020-03-23 17:17:41 +08:00
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
# model
net = Net(args.state_shape, hidden_sizes=args.hidden_sizes, device=args.device)
actor = ActorProb(net, args.action_shape, device=args.device,
unbounded=True).to(args.device)
2020-03-23 17:17:41 +08:00
actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
net_c1 = Net(
args.state_shape,
args.action_shape,
hidden_sizes=args.hidden_sizes,
concat=True,
device=args.device
)
critic1 = Critic(net_c1, device=args.device).to(args.device)
2020-03-23 17:17:41 +08:00
critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr)
net_c2 = Net(
args.state_shape,
args.action_shape,
hidden_sizes=args.hidden_sizes,
concat=True,
device=args.device
)
critic2 = Critic(net_c2, device=args.device).to(args.device)
2020-03-23 17:17:41 +08:00
critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr)
if args.auto_alpha:
target_entropy = -np.prod(env.action_space.shape)
log_alpha = torch.zeros(1, requires_grad=True, device=args.device)
alpha_optim = torch.optim.Adam([log_alpha], lr=args.alpha_lr)
args.alpha = (target_entropy, log_alpha, alpha_optim)
2020-03-23 17:17:41 +08:00
policy = SACPolicy(
actor,
actor_optim,
critic1,
critic1_optim,
critic2,
critic2_optim,
tau=args.tau,
gamma=args.gamma,
alpha=args.alpha,
2020-06-03 13:59:47 +08:00
reward_normalization=args.rew_norm,
estimation_step=args.n_step,
action_space=env.action_space
)
2020-03-23 17:17:41 +08:00
# collector
train_collector = Collector(
policy,
train_envs,
VectorReplayBuffer(args.buffer_size, len(train_envs)),
exploration_noise=True
)
2020-03-23 17:17:41 +08:00
test_collector = Collector(policy, test_envs)
2020-03-25 14:08:28 +08:00
# train_collector.collect(n_step=args.buffer_size)
2020-03-23 17:17:41 +08:00
# log
2020-04-11 16:54:27 +08:00
log_path = os.path.join(args.logdir, args.task, 'sac')
writer = SummaryWriter(log_path)
logger = TensorboardLogger(writer)
2020-03-23 17:17:41 +08:00
def save_best_fn(policy):
2020-04-11 16:54:27 +08:00
torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))
def stop_fn(mean_rewards):
2022-03-04 03:35:39 +01:00
return mean_rewards >= args.reward_threshold
2020-03-23 17:17:41 +08:00
# trainer
result = offpolicy_trainer(
policy,
train_collector,
test_collector,
args.epoch,
args.step_per_epoch,
args.step_per_collect,
args.test_num,
args.batch_size,
update_per_step=args.update_per_step,
stop_fn=stop_fn,
save_best_fn=save_best_fn,
logger=logger
)
2020-03-25 14:08:28 +08:00
assert stop_fn(result['best_reward'])
2020-04-13 19:37:27 +08:00
# here we define an imitation collector with a trivial policy
policy.eval()
2022-03-04 03:35:39 +01:00
if args.task.startswith("Pendulum"):
args.reward_threshold -= 50 # lower the goal
net = Actor(
Net(
args.state_shape,
hidden_sizes=args.imitation_hidden_sizes,
device=args.device
),
args.action_shape,
max_action=args.max_action,
device=args.device
).to(args.device)
2020-04-13 19:37:27 +08:00
optim = torch.optim.Adam(net.parameters(), lr=args.il_lr)
il_policy = ImitationPolicy(
net,
optim,
action_space=env.action_space,
action_scaling=True,
action_bound_method="clip"
)
il_test_collector = Collector(
il_policy,
envpool.make_gymnasium(args.task, num_envs=args.test_num, seed=args.seed),
)
2020-04-13 19:37:27 +08:00
train_collector.reset()
result = offpolicy_trainer(
il_policy,
train_collector,
il_test_collector,
args.epoch,
args.il_step_per_epoch,
args.step_per_collect,
args.test_num,
args.batch_size,
stop_fn=stop_fn,
save_best_fn=save_best_fn,
logger=logger
)
2020-04-13 19:37:27 +08:00
assert stop_fn(result['best_reward'])
2020-03-23 17:17:41 +08:00
if __name__ == '__main__':
2020-04-13 19:37:27 +08:00
test_sac_with_il()