| 
									
										
										
										
											2020-04-05 09:10:21 +08:00
										 |  |  | import os | 
					
						
							| 
									
										
										
										
											2020-03-21 17:04:42 +08:00
										 |  |  | import gym | 
					
						
							|  |  |  | import torch | 
					
						
							|  |  |  | import pprint | 
					
						
							|  |  |  | import argparse | 
					
						
							|  |  |  | import numpy as np | 
					
						
							|  |  |  | from torch.utils.tensorboard import SummaryWriter | 
					
						
							| 
									
										
										
										
											2020-09-12 08:44:50 +08:00
										 |  |  | from torch.distributions import Independent, Normal | 
					
						
							| 
									
										
										
										
											2020-03-21 17:04:42 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-04-14 21:11:06 +08:00
										 |  |  | from tianshou.policy import PPOPolicy | 
					
						
							| 
									
										
										
										
											2021-02-24 14:48:42 +08:00
										 |  |  | from tianshou.utils import BasicLogger | 
					
						
							| 
									
										
										
										
											2020-09-02 13:03:32 +08:00
										 |  |  | from tianshou.env import DummyVectorEnv | 
					
						
							|  |  |  | from tianshou.utils.net.common import Net | 
					
						
							| 
									
										
										
										
											2020-03-21 17:04:42 +08:00
										 |  |  | from tianshou.trainer import onpolicy_trainer | 
					
						
							| 
									
										
										
										
											2021-02-19 10:33:49 +08:00
										 |  |  | from tianshou.data import Collector, VectorReplayBuffer | 
					
						
							| 
									
										
										
										
											2020-07-09 22:57:01 +08:00
										 |  |  | from tianshou.utils.net.continuous import ActorProb, Critic | 
					
						
							| 
									
										
										
										
											2020-03-21 17:04:42 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def get_args(): | 
					
						
							|  |  |  |     parser = argparse.ArgumentParser() | 
					
						
							|  |  |  |     parser.add_argument('--task', type=str, default='Pendulum-v0') | 
					
						
							| 
									
										
										
										
											2021-01-29 12:23:18 +08:00
										 |  |  |     parser.add_argument('--seed', type=int, default=1) | 
					
						
							| 
									
										
										
										
											2020-03-21 17:04:42 +08:00
										 |  |  |     parser.add_argument('--buffer-size', type=int, default=20000) | 
					
						
							| 
									
										
										
										
											2020-04-14 21:11:06 +08:00
										 |  |  |     parser.add_argument('--lr', type=float, default=1e-3) | 
					
						
							|  |  |  |     parser.add_argument('--gamma', type=float, default=0.99) | 
					
						
							| 
									
										
										
										
											2021-02-27 11:20:43 +08:00
										 |  |  |     parser.add_argument('--epoch', type=int, default=5) | 
					
						
							| 
									
										
										
										
											2021-02-21 13:06:02 +08:00
										 |  |  |     parser.add_argument('--step-per-epoch', type=int, default=150000) | 
					
						
							|  |  |  |     parser.add_argument('--episode-per-collect', type=int, default=16) | 
					
						
							| 
									
										
										
										
											2020-04-14 21:11:06 +08:00
										 |  |  |     parser.add_argument('--repeat-per-collect', type=int, default=2) | 
					
						
							| 
									
										
										
										
											2020-04-19 14:30:42 +08:00
										 |  |  |     parser.add_argument('--batch-size', type=int, default=128) | 
					
						
							| 
									
										
										
										
											2021-01-20 16:54:13 +08:00
										 |  |  |     parser.add_argument('--hidden-sizes', type=int, | 
					
						
							|  |  |  |                         nargs='*', default=[128, 128]) | 
					
						
							| 
									
										
										
										
											2020-04-19 14:30:42 +08:00
										 |  |  |     parser.add_argument('--training-num', type=int, default=16) | 
					
						
							| 
									
										
										
										
											2020-03-21 17:04:42 +08:00
										 |  |  |     parser.add_argument('--test-num', type=int, default=100) | 
					
						
							|  |  |  |     parser.add_argument('--logdir', type=str, default='log') | 
					
						
							| 
									
										
										
										
											2020-03-28 07:27:18 +08:00
										 |  |  |     parser.add_argument('--render', type=float, default=0.) | 
					
						
							| 
									
										
										
										
											2020-03-21 17:04:42 +08:00
										 |  |  |     parser.add_argument( | 
					
						
							|  |  |  |         '--device', type=str, | 
					
						
							|  |  |  |         default='cuda' if torch.cuda.is_available() else 'cpu') | 
					
						
							|  |  |  |     # ppo special | 
					
						
							|  |  |  |     parser.add_argument('--vf-coef', type=float, default=0.5) | 
					
						
							| 
									
										
										
										
											2020-04-19 14:30:42 +08:00
										 |  |  |     parser.add_argument('--ent-coef', type=float, default=0.01) | 
					
						
							| 
									
										
										
										
											2020-03-21 17:04:42 +08:00
										 |  |  |     parser.add_argument('--eps-clip', type=float, default=0.2) | 
					
						
							|  |  |  |     parser.add_argument('--max-grad-norm', type=float, default=0.5) | 
					
						
							| 
									
										
										
										
											2020-04-14 21:11:06 +08:00
										 |  |  |     parser.add_argument('--gae-lambda', type=float, default=0.95) | 
					
						
							| 
									
										
										
										
											2020-06-03 13:59:47 +08:00
										 |  |  |     parser.add_argument('--rew-norm', type=int, default=1) | 
					
						
							|  |  |  |     parser.add_argument('--dual-clip', type=float, default=None) | 
					
						
							|  |  |  |     parser.add_argument('--value-clip', type=int, default=1) | 
					
						
							| 
									
										
										
										
											2020-03-21 17:04:42 +08:00
										 |  |  |     args = parser.parse_known_args()[0] | 
					
						
							|  |  |  |     return args | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-04-19 14:30:42 +08:00
										 |  |  | def test_ppo(args=get_args()): | 
					
						
							| 
									
										
										
										
											2020-04-05 09:10:21 +08:00
										 |  |  |     torch.set_num_threads(1)  # we just need only one thread for NN | 
					
						
							| 
									
										
										
										
											2020-03-21 17:04:42 +08:00
										 |  |  |     env = gym.make(args.task) | 
					
						
							|  |  |  |     if args.task == 'Pendulum-v0': | 
					
						
							|  |  |  |         env.spec.reward_threshold = -250 | 
					
						
							|  |  |  |     args.state_shape = env.observation_space.shape or env.observation_space.n | 
					
						
							|  |  |  |     args.action_shape = env.action_space.shape or env.action_space.n | 
					
						
							|  |  |  |     args.max_action = env.action_space.high[0] | 
					
						
							| 
									
										
										
										
											2020-04-03 21:28:12 +08:00
										 |  |  |     # you can also use tianshou.env.SubprocVectorEnv | 
					
						
							| 
									
										
										
										
											2020-03-21 17:04:42 +08:00
										 |  |  |     # train_envs = gym.make(args.task) | 
					
						
							| 
									
										
										
										
											2020-08-19 15:00:24 +08:00
										 |  |  |     train_envs = DummyVectorEnv( | 
					
						
							| 
									
										
										
										
											2020-03-25 14:08:28 +08:00
										 |  |  |         [lambda: gym.make(args.task) for _ in range(args.training_num)]) | 
					
						
							| 
									
										
										
										
											2020-03-21 17:04:42 +08:00
										 |  |  |     # test_envs = gym.make(args.task) | 
					
						
							| 
									
										
										
										
											2020-08-19 15:00:24 +08:00
										 |  |  |     test_envs = DummyVectorEnv( | 
					
						
							| 
									
										
										
										
											2020-03-25 14:08:28 +08:00
										 |  |  |         [lambda: gym.make(args.task) for _ in range(args.test_num)]) | 
					
						
							| 
									
										
										
										
											2020-03-21 17:04:42 +08:00
										 |  |  |     # seed | 
					
						
							|  |  |  |     np.random.seed(args.seed) | 
					
						
							|  |  |  |     torch.manual_seed(args.seed) | 
					
						
							|  |  |  |     train_envs.seed(args.seed) | 
					
						
							|  |  |  |     test_envs.seed(args.seed) | 
					
						
							|  |  |  |     # model | 
					
						
							| 
									
										
										
										
											2021-01-20 16:54:13 +08:00
										 |  |  |     net = Net(args.state_shape, hidden_sizes=args.hidden_sizes, | 
					
						
							|  |  |  |               device=args.device) | 
					
						
							|  |  |  |     actor = ActorProb(net, args.action_shape, max_action=args.max_action, | 
					
						
							|  |  |  |                       device=args.device).to(args.device) | 
					
						
							| 
									
										
										
										
											2020-07-09 22:57:01 +08:00
										 |  |  |     critic = Critic(Net( | 
					
						
							| 
									
										
										
										
											2021-01-20 16:54:13 +08:00
										 |  |  |         args.state_shape, hidden_sizes=args.hidden_sizes, device=args.device | 
					
						
							| 
									
										
										
										
											2020-07-09 22:57:01 +08:00
										 |  |  |     ), device=args.device).to(args.device) | 
					
						
							| 
									
										
										
										
											2020-05-16 20:27:01 +08:00
										 |  |  |     # orthogonal initialization | 
					
						
							|  |  |  |     for m in list(actor.modules()) + list(critic.modules()): | 
					
						
							|  |  |  |         if isinstance(m, torch.nn.Linear): | 
					
						
							|  |  |  |             torch.nn.init.orthogonal_(m.weight) | 
					
						
							| 
									
										
										
										
											2020-05-17 17:06:20 +08:00
										 |  |  |             torch.nn.init.zeros_(m.bias) | 
					
						
							| 
									
										
										
										
											2021-01-20 16:54:13 +08:00
										 |  |  |     optim = torch.optim.Adam(set( | 
					
						
							|  |  |  |         actor.parameters()).union(critic.parameters()), lr=args.lr) | 
					
						
							| 
									
										
										
										
											2020-09-12 08:44:50 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |     # replace DiagGuassian with Independent(Normal) which is equivalent | 
					
						
							|  |  |  |     # pass *logits to be consistent with policy.forward | 
					
						
							|  |  |  |     def dist(*logits): | 
					
						
							|  |  |  |         return Independent(Normal(*logits), 1) | 
					
						
							| 
									
										
										
										
											2020-03-21 17:04:42 +08:00
										 |  |  |     policy = PPOPolicy( | 
					
						
							| 
									
										
										
										
											2021-03-23 22:05:48 +08:00
										 |  |  |         actor, critic, optim, dist, | 
					
						
							|  |  |  |         discount_factor=args.gamma, | 
					
						
							| 
									
										
										
										
											2020-03-21 17:04:42 +08:00
										 |  |  |         max_grad_norm=args.max_grad_norm, | 
					
						
							|  |  |  |         eps_clip=args.eps_clip, | 
					
						
							|  |  |  |         vf_coef=args.vf_coef, | 
					
						
							|  |  |  |         ent_coef=args.ent_coef, | 
					
						
							| 
									
										
										
										
											2020-04-19 14:30:42 +08:00
										 |  |  |         reward_normalization=args.rew_norm, | 
					
						
							| 
									
										
										
										
											2020-05-18 16:23:35 +08:00
										 |  |  |         # dual_clip=args.dual_clip, | 
					
						
							|  |  |  |         # dual clip cause monotonically increasing log_std :) | 
					
						
							| 
									
										
										
										
											2020-04-19 14:30:42 +08:00
										 |  |  |         value_clip=args.value_clip, | 
					
						
							| 
									
										
										
										
											2021-03-21 16:45:50 +08:00
										 |  |  |         gae_lambda=args.gae_lambda, | 
					
						
							|  |  |  |         action_space=env.action_space) | 
					
						
							| 
									
										
										
										
											2020-03-21 17:04:42 +08:00
										 |  |  |     # collector | 
					
						
							|  |  |  |     train_collector = Collector( | 
					
						
							| 
									
										
										
										
											2021-02-19 10:33:49 +08:00
										 |  |  |         policy, train_envs, | 
					
						
							|  |  |  |         VectorReplayBuffer(args.buffer_size, len(train_envs)), | 
					
						
							|  |  |  |         exploration_noise=True) | 
					
						
							| 
									
										
										
										
											2020-03-23 11:34:52 +08:00
										 |  |  |     test_collector = Collector(policy, test_envs) | 
					
						
							| 
									
										
										
										
											2020-03-21 17:04:42 +08:00
										 |  |  |     # log | 
					
						
							| 
									
										
										
										
											2020-04-11 16:54:27 +08:00
										 |  |  |     log_path = os.path.join(args.logdir, args.task, 'ppo') | 
					
						
							| 
									
										
										
										
											2020-04-05 09:10:21 +08:00
										 |  |  |     writer = SummaryWriter(log_path) | 
					
						
							| 
									
										
										
										
											2021-02-24 14:48:42 +08:00
										 |  |  |     logger = BasicLogger(writer) | 
					
						
							| 
									
										
										
										
											2020-03-21 17:04:42 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-04-11 16:54:27 +08:00
										 |  |  |     def save_fn(policy): | 
					
						
							|  |  |  |         torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth')) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-09-26 16:35:37 +08:00
										 |  |  |     def stop_fn(mean_rewards): | 
					
						
							|  |  |  |         return mean_rewards >= env.spec.reward_threshold | 
					
						
							| 
									
										
										
										
											2020-03-21 17:04:42 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |     # trainer | 
					
						
							|  |  |  |     result = onpolicy_trainer( | 
					
						
							|  |  |  |         policy, train_collector, test_collector, args.epoch, | 
					
						
							| 
									
										
										
										
											2021-02-21 13:06:02 +08:00
										 |  |  |         args.step_per_epoch, args.repeat_per_collect, args.test_num, args.batch_size, | 
					
						
							|  |  |  |         episode_per_collect=args.episode_per_collect, stop_fn=stop_fn, save_fn=save_fn, | 
					
						
							| 
									
										
										
										
											2021-02-24 14:48:42 +08:00
										 |  |  |         logger=logger) | 
					
						
							| 
									
										
										
										
											2020-03-21 17:04:42 +08:00
										 |  |  |     assert stop_fn(result['best_reward']) | 
					
						
							|  |  |  |     if __name__ == '__main__': | 
					
						
							|  |  |  |         pprint.pprint(result) | 
					
						
							|  |  |  |         # Let's watch its performance! | 
					
						
							|  |  |  |         env = gym.make(args.task) | 
					
						
							| 
									
										
										
										
											2020-08-27 12:15:18 +08:00
										 |  |  |         policy.eval() | 
					
						
							| 
									
										
										
										
											2020-03-21 17:04:42 +08:00
										 |  |  |         collector = Collector(policy, env) | 
					
						
							| 
									
										
										
										
											2020-03-28 07:27:18 +08:00
										 |  |  |         result = collector.collect(n_episode=1, render=args.render) | 
					
						
							| 
									
										
										
										
											2021-02-19 10:33:49 +08:00
										 |  |  |         rews, lens = result["rews"], result["lens"] | 
					
						
							|  |  |  |         print(f"Final reward: {rews.mean()}, length: {lens.mean()}") | 
					
						
							| 
									
										
										
										
											2020-03-21 17:04:42 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | if __name__ == '__main__': | 
					
						
							| 
									
										
										
										
											2020-04-19 14:30:42 +08:00
										 |  |  |     test_ppo() |