Tianshou/test/discrete/test_dqn.py

148 lines
5.4 KiB
Python
Raw Normal View History

2020-04-11 16:54:27 +08:00
import os
2020-03-15 17:41:00 +08:00
import gym
import torch
import pickle
2020-03-20 19:52:29 +08:00
import pprint
2020-03-15 17:41:00 +08:00
import argparse
import numpy as np
from torch.utils.tensorboard import SummaryWriter
2020-04-03 21:28:12 +08:00
from tianshou.policy import DQNPolicy
from tianshou.env import DummyVectorEnv
from tianshou.utils.net.common import Net
from tianshou.trainer import offpolicy_trainer
from tianshou.data import Collector, ReplayBuffer, PrioritizedReplayBuffer
2020-03-15 17:41:00 +08:00
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--task', type=str, default='CartPole-v0')
2020-03-16 11:11:29 +08:00
parser.add_argument('--seed', type=int, default=1626)
2020-03-15 17:41:00 +08:00
parser.add_argument('--eps-test', type=float, default=0.05)
parser.add_argument('--eps-train', type=float, default=0.1)
parser.add_argument('--buffer-size', type=int, default=20000)
2020-03-25 14:08:28 +08:00
parser.add_argument('--lr', type=float, default=1e-3)
2020-03-15 17:41:00 +08:00
parser.add_argument('--gamma', type=float, default=0.9)
2020-03-28 09:43:35 +08:00
parser.add_argument('--n-step', type=int, default=3)
2020-03-25 14:08:28 +08:00
parser.add_argument('--target-update-freq', type=int, default=320)
2020-04-14 21:11:06 +08:00
parser.add_argument('--epoch', type=int, default=10)
2020-03-25 14:08:28 +08:00
parser.add_argument('--step-per-epoch', type=int, default=1000)
2020-03-15 17:41:00 +08:00
parser.add_argument('--collect-per-step', type=int, default=10)
parser.add_argument('--batch-size', type=int, default=64)
parser.add_argument('--hidden-sizes', type=int,
nargs='*', default=[128, 128, 128, 128])
2020-03-15 17:41:00 +08:00
parser.add_argument('--training-num', type=int, default=8)
2020-03-17 15:16:30 +08:00
parser.add_argument('--test-num', type=int, default=100)
2020-03-15 17:41:00 +08:00
parser.add_argument('--logdir', type=str, default='log')
parser.add_argument('--render', type=float, default=0.)
parser.add_argument('--prioritized-replay',
action="store_true", default=False)
parser.add_argument('--alpha', type=float, default=0.6)
parser.add_argument('--beta', type=float, default=0.4)
parser.add_argument(
'--save-buffer-name', type=str,
default="./expert_DQN_CartPole-v0.pkl")
2020-03-15 17:41:00 +08:00
parser.add_argument(
'--device', type=str,
default='cuda' if torch.cuda.is_available() else 'cpu')
args = parser.parse_known_args()[0]
return args
def test_dqn(args=get_args()):
env = gym.make(args.task)
args.state_shape = env.observation_space.shape or env.observation_space.n
args.action_shape = env.action_space.shape or env.action_space.n
2020-03-17 11:37:31 +08:00
# train_envs = gym.make(args.task)
2020-04-03 21:28:12 +08:00
# you can also use tianshou.env.SubprocVectorEnv
train_envs = DummyVectorEnv(
2020-03-25 14:08:28 +08:00
[lambda: gym.make(args.task) for _ in range(args.training_num)])
2020-03-16 11:11:29 +08:00
# test_envs = gym.make(args.task)
test_envs = DummyVectorEnv(
2020-03-25 14:08:28 +08:00
[lambda: gym.make(args.task) for _ in range(args.test_num)])
2020-03-15 17:41:00 +08:00
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
train_envs.seed(args.seed)
test_envs.seed(args.seed)
# Q_param = V_param = {"hidden_sizes": [128]}
2020-03-15 17:41:00 +08:00
# model
net = Net(args.state_shape, args.action_shape,
hidden_sizes=args.hidden_sizes, device=args.device,
# dueling=(Q_param, V_param),
).to(args.device)
2020-03-15 17:41:00 +08:00
optim = torch.optim.Adam(net.parameters(), lr=args.lr)
2020-03-25 14:08:28 +08:00
policy = DQNPolicy(
net, optim, args.gamma, args.n_step,
target_update_freq=args.target_update_freq)
# buffer
if args.prioritized_replay:
buf = PrioritizedReplayBuffer(
args.buffer_size, alpha=args.alpha, beta=args.beta)
else:
buf = ReplayBuffer(args.buffer_size)
2020-03-15 17:41:00 +08:00
# collector
train_collector = Collector(policy, train_envs, buf)
2020-03-23 11:34:52 +08:00
test_collector = Collector(policy, test_envs)
2020-03-25 14:08:28 +08:00
# policy.set_eps(1)
train_collector.collect(n_step=args.batch_size)
2020-03-15 17:41:00 +08:00
# log
2020-04-11 16:54:27 +08:00
log_path = os.path.join(args.logdir, args.task, 'dqn')
writer = SummaryWriter(log_path)
def save_fn(policy):
torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))
2020-03-19 17:23:46 +08:00
def stop_fn(mean_rewards):
return mean_rewards >= env.spec.reward_threshold
2020-03-19 17:23:46 +08:00
def train_fn(epoch, env_step):
# eps annnealing, just a demo
if env_step <= 10000:
policy.set_eps(args.eps_train)
elif env_step <= 50000:
eps = args.eps_train - (env_step - 10000) / \
40000 * (0.9 * args.eps_train)
policy.set_eps(eps)
else:
policy.set_eps(0.1 * args.eps_train)
2020-03-19 17:23:46 +08:00
def test_fn(epoch, env_step):
2020-03-15 17:41:00 +08:00
policy.set_eps(args.eps_test)
2020-03-19 17:23:46 +08:00
# trainer
2020-03-20 19:52:29 +08:00
result = offpolicy_trainer(
policy, train_collector, test_collector, args.epoch,
2020-03-27 09:04:29 +08:00
args.step_per_epoch, args.collect_per_step, args.test_num,
2020-03-20 19:52:29 +08:00
args.batch_size, train_fn=train_fn, test_fn=test_fn,
2020-04-11 16:54:27 +08:00
stop_fn=stop_fn, save_fn=save_fn, writer=writer)
2020-03-19 17:23:46 +08:00
2020-03-20 19:52:29 +08:00
assert stop_fn(result['best_reward'])
2020-03-16 11:11:29 +08:00
if __name__ == '__main__':
2020-03-20 19:52:29 +08:00
pprint.pprint(result)
2020-03-16 15:04:58 +08:00
# Let's watch its performance!
2020-03-16 11:11:29 +08:00
env = gym.make(args.task)
policy.eval()
policy.set_eps(args.eps_test)
2020-03-19 17:23:46 +08:00
collector = Collector(policy, env)
result = collector.collect(n_episode=1, render=args.render)
2020-03-19 17:23:46 +08:00
print(f'Final reward: {result["rew"]}, length: {result["len"]}')
2020-03-15 17:41:00 +08:00
# save buffer in pickle format, for imitation learning unittest
buf = ReplayBuffer(args.buffer_size)
collector = Collector(policy, test_envs, buf)
collector.collect(n_step=args.buffer_size)
pickle.dump(buf, open(args.save_buffer_name, "wb"))
2020-03-15 17:41:00 +08:00
def test_pdqn(args=get_args()):
args.prioritized_replay = True
args.gamma = .95
args.seed = 1
test_dqn(args)
2020-03-15 17:41:00 +08:00
if __name__ == '__main__':
test_dqn(get_args())