2020-03-14 21:48:31 +08:00
|
|
|
import torch
|
2020-04-28 20:56:02 +08:00
|
|
|
import pprint
|
2020-03-13 17:49:22 +08:00
|
|
|
import numpy as np
|
2020-05-12 11:31:47 +08:00
|
|
|
from typing import Any, List, Union, Iterator, Optional
|
2020-03-13 17:49:22 +08:00
|
|
|
|
|
|
|
|
2020-05-29 11:56:46 +02:00
|
|
|
class Batch:
|
2020-04-05 18:34:45 +08:00
|
|
|
"""Tianshou provides :class:`~tianshou.data.Batch` as the internal data
|
2020-04-03 21:28:12 +08:00
|
|
|
structure to pass any kind of data to other methods, for example, a
|
|
|
|
collector gives a :class:`~tianshou.data.Batch` to policy for learning.
|
|
|
|
Here is the usage:
|
|
|
|
::
|
|
|
|
|
|
|
|
>>> import numpy as np
|
|
|
|
>>> from tianshou.data import Batch
|
|
|
|
>>> data = Batch(a=4, b=[5, 5], c='2312312')
|
|
|
|
>>> data.b
|
|
|
|
[5, 5]
|
|
|
|
>>> data.b = np.array([3, 4, 5])
|
2020-04-09 21:36:53 +08:00
|
|
|
>>> print(data)
|
|
|
|
Batch(
|
|
|
|
a: 4,
|
2020-05-12 11:31:47 +08:00
|
|
|
b: array([3, 4, 5]),
|
|
|
|
c: '2312312',
|
2020-04-09 21:36:53 +08:00
|
|
|
)
|
2020-04-03 21:28:12 +08:00
|
|
|
|
|
|
|
In short, you can define a :class:`Batch` with any key-value pair. The
|
2020-04-29 17:48:48 +08:00
|
|
|
current implementation of Tianshou typically use 7 reserved keys in
|
2020-04-03 21:28:12 +08:00
|
|
|
:class:`~tianshou.data.Batch`:
|
|
|
|
|
2020-04-05 18:34:45 +08:00
|
|
|
* ``obs`` the observation of step :math:`t` ;
|
|
|
|
* ``act`` the action of step :math:`t` ;
|
|
|
|
* ``rew`` the reward of step :math:`t` ;
|
|
|
|
* ``done`` the done flag of step :math:`t` ;
|
|
|
|
* ``obs_next`` the observation of step :math:`t+1` ;
|
|
|
|
* ``info`` the info of step :math:`t` (in ``gym.Env``, the ``env.step()``\
|
2020-04-03 21:28:12 +08:00
|
|
|
function return 4 arguments, and the last one is ``info``);
|
2020-04-29 17:48:48 +08:00
|
|
|
* ``policy`` the data computed by policy in step :math:`t`;
|
2020-04-03 21:28:12 +08:00
|
|
|
|
|
|
|
:class:`~tianshou.data.Batch` has other methods, including
|
|
|
|
:meth:`~tianshou.data.Batch.__getitem__`,
|
|
|
|
:meth:`~tianshou.data.Batch.__len__`,
|
|
|
|
:meth:`~tianshou.data.Batch.append`,
|
|
|
|
and :meth:`~tianshou.data.Batch.split`:
|
|
|
|
::
|
|
|
|
|
|
|
|
>>> data = Batch(obs=np.array([0, 11, 22]), rew=np.array([6, 6, 6]))
|
|
|
|
>>> # here we test __getitem__
|
|
|
|
>>> index = [2, 1]
|
|
|
|
>>> data[index].obs
|
|
|
|
array([22, 11])
|
|
|
|
|
|
|
|
>>> # here we test __len__
|
|
|
|
>>> len(data)
|
|
|
|
3
|
|
|
|
|
|
|
|
>>> data.append(data) # similar to list.append
|
|
|
|
>>> data.obs
|
|
|
|
array([0, 11, 22, 0, 11, 22])
|
|
|
|
|
|
|
|
>>> # split whole data into multiple small batch
|
2020-04-28 20:56:02 +08:00
|
|
|
>>> for d in data.split(size=2, shuffle=False):
|
2020-04-03 21:28:12 +08:00
|
|
|
... print(d.obs, d.rew)
|
|
|
|
[ 0 11] [6 6]
|
|
|
|
[22 0] [6 6]
|
|
|
|
[11 22] [6 6]
|
|
|
|
"""
|
2020-03-13 17:49:22 +08:00
|
|
|
|
2020-05-12 11:31:47 +08:00
|
|
|
def __init__(self, **kwargs) -> None:
|
2020-03-11 09:09:56 +08:00
|
|
|
super().__init__()
|
2020-04-28 20:56:02 +08:00
|
|
|
self._meta = {}
|
|
|
|
for k, v in kwargs.items():
|
2020-05-27 11:02:23 +08:00
|
|
|
if isinstance(v, (list, np.ndarray)) \
|
2020-04-28 20:56:02 +08:00
|
|
|
and len(v) > 0 and isinstance(v[0], dict) and k != 'info':
|
|
|
|
self._meta[k] = list(v[0].keys())
|
|
|
|
for k_ in v[0].keys():
|
|
|
|
k__ = '_' + k + '@' + k_
|
|
|
|
self.__dict__[k__] = np.array([
|
|
|
|
v[i][k_] for i in range(len(v))
|
|
|
|
])
|
2020-05-27 11:02:23 +08:00
|
|
|
elif isinstance(v, dict):
|
2020-04-28 20:56:02 +08:00
|
|
|
self._meta[k] = list(v.keys())
|
2020-05-29 11:56:46 +02:00
|
|
|
for k_, v_ in v.items():
|
2020-04-28 20:56:02 +08:00
|
|
|
k__ = '_' + k + '@' + k_
|
2020-05-29 11:56:46 +02:00
|
|
|
self.__dict__[k__] = v_
|
2020-04-28 20:56:02 +08:00
|
|
|
else:
|
|
|
|
self.__dict__[k] = kwargs[k]
|
2020-03-12 22:20:33 +08:00
|
|
|
|
2020-05-12 11:31:47 +08:00
|
|
|
def __getitem__(self, index: Union[str, slice]) -> Union['Batch', dict]:
|
2020-04-04 21:02:06 +08:00
|
|
|
"""Return self[index]."""
|
2020-04-28 20:56:02 +08:00
|
|
|
if isinstance(index, str):
|
|
|
|
return self.__getattr__(index)
|
2020-03-14 21:48:31 +08:00
|
|
|
b = Batch()
|
2020-05-29 11:56:46 +02:00
|
|
|
for k, v in self.__dict__.items():
|
|
|
|
if k != '_meta' and v is not None:
|
|
|
|
b.__dict__.update(**{k: v[index]})
|
2020-04-28 20:56:02 +08:00
|
|
|
b._meta = self._meta
|
2020-03-14 21:48:31 +08:00
|
|
|
return b
|
|
|
|
|
2020-05-12 11:31:47 +08:00
|
|
|
def __getattr__(self, key: str) -> Union['Batch', Any]:
|
2020-04-28 20:56:02 +08:00
|
|
|
"""Return self.key"""
|
2020-05-29 11:56:46 +02:00
|
|
|
if key not in self._meta.keys():
|
2020-04-29 12:14:53 +08:00
|
|
|
if key not in self.__dict__:
|
2020-04-28 20:56:02 +08:00
|
|
|
raise AttributeError(key)
|
|
|
|
return self.__dict__[key]
|
|
|
|
d = {}
|
|
|
|
for k_ in self._meta[key]:
|
|
|
|
k__ = '_' + key + '@' + k_
|
|
|
|
d[k_] = self.__dict__[k__]
|
2020-04-29 12:14:53 +08:00
|
|
|
return Batch(**d)
|
2020-04-28 20:56:02 +08:00
|
|
|
|
2020-05-12 11:31:47 +08:00
|
|
|
def __repr__(self) -> str:
|
2020-04-09 19:53:45 +08:00
|
|
|
"""Return str(self)."""
|
|
|
|
s = self.__class__.__name__ + '(\n'
|
|
|
|
flag = False
|
2020-04-29 12:14:53 +08:00
|
|
|
for k in sorted(list(self.__dict__) + list(self._meta)):
|
2020-04-28 20:56:02 +08:00
|
|
|
if k[0] != '_' and (self.__dict__.get(k, None) is not None or
|
2020-04-29 12:14:53 +08:00
|
|
|
k in self._meta):
|
2020-04-09 19:53:45 +08:00
|
|
|
rpl = '\n' + ' ' * (6 + len(k))
|
2020-04-28 20:56:02 +08:00
|
|
|
obj = pprint.pformat(self.__getattr__(k)).replace('\n', rpl)
|
2020-04-09 19:53:45 +08:00
|
|
|
s += f' {k}: {obj},\n'
|
|
|
|
flag = True
|
|
|
|
if flag:
|
2020-04-29 12:14:53 +08:00
|
|
|
s += ')'
|
2020-04-09 19:53:45 +08:00
|
|
|
else:
|
2020-04-29 12:14:53 +08:00
|
|
|
s = self.__class__.__name__ + '()'
|
2020-04-09 19:53:45 +08:00
|
|
|
return s
|
|
|
|
|
2020-05-12 11:31:47 +08:00
|
|
|
def keys(self) -> List[str]:
|
2020-04-28 20:56:02 +08:00
|
|
|
"""Return self.keys()."""
|
2020-05-29 11:56:46 +02:00
|
|
|
return sorted(list(self._meta.keys()) +
|
|
|
|
[k for k in self.__dict__.keys() if k[0] != '_'])
|
2020-04-28 20:56:02 +08:00
|
|
|
|
2020-05-29 08:03:37 +08:00
|
|
|
def values(self) -> List[Any]:
|
|
|
|
"""Return self.values()."""
|
|
|
|
return [self[k] for k in self.keys()]
|
|
|
|
|
2020-05-12 11:31:47 +08:00
|
|
|
def get(self, k: str, d: Optional[Any] = None) -> Union['Batch', Any]:
|
2020-05-05 13:39:51 +08:00
|
|
|
"""Return self[k] if k in self else d. d defaults to None."""
|
|
|
|
if k in self.__dict__ or k in self._meta:
|
|
|
|
return self.__getattr__(k)
|
|
|
|
return d
|
|
|
|
|
2020-05-29 14:45:21 +02:00
|
|
|
def to_numpy(self) -> None:
|
2020-04-29 17:48:48 +08:00
|
|
|
"""Change all torch.Tensor to numpy.ndarray. This is an inplace
|
|
|
|
operation.
|
|
|
|
"""
|
2020-05-29 11:56:46 +02:00
|
|
|
for k, v in self.__dict__.items():
|
|
|
|
if isinstance(v, torch.Tensor):
|
|
|
|
self.__dict__[k] = v.cpu().numpy()
|
2020-05-29 14:45:21 +02:00
|
|
|
elif isinstance(v, Batch):
|
|
|
|
v.to_numpy()
|
|
|
|
|
|
|
|
def to_torch(self,
|
|
|
|
dtype: Optional[torch.dtype] = None,
|
|
|
|
device: Union[str, int] = 'cpu'
|
|
|
|
) -> None:
|
|
|
|
"""Change all numpy.ndarray to torch.Tensor. This is an inplace
|
|
|
|
operation.
|
|
|
|
"""
|
|
|
|
for k, v in self.__dict__.items():
|
|
|
|
if isinstance(v, np.ndarray):
|
|
|
|
v = torch.from_numpy(v).to(device)
|
|
|
|
if dtype is not None:
|
|
|
|
v = v.type(dtype)
|
|
|
|
self.__dict__[k] = v
|
|
|
|
elif isinstance(v, Batch):
|
|
|
|
v.to_torch()
|
2020-04-29 17:48:48 +08:00
|
|
|
|
2020-05-12 11:31:47 +08:00
|
|
|
def append(self, batch: 'Batch') -> None:
|
2020-04-05 18:34:45 +08:00
|
|
|
"""Append a :class:`~tianshou.data.Batch` object to current batch."""
|
2020-03-13 17:49:22 +08:00
|
|
|
assert isinstance(batch, Batch), 'Only append Batch is allowed!'
|
2020-05-29 11:56:46 +02:00
|
|
|
for k, v in batch.__dict__.items():
|
2020-04-28 20:56:02 +08:00
|
|
|
if k == '_meta':
|
2020-04-29 12:14:53 +08:00
|
|
|
self._meta.update(batch._meta)
|
2020-04-28 20:56:02 +08:00
|
|
|
continue
|
2020-05-29 11:56:46 +02:00
|
|
|
if v is None:
|
2020-03-13 17:49:22 +08:00
|
|
|
continue
|
|
|
|
if not hasattr(self, k) or self.__dict__[k] is None:
|
2020-05-29 11:56:46 +02:00
|
|
|
self.__dict__[k] = v
|
|
|
|
elif isinstance(v, np.ndarray):
|
|
|
|
self.__dict__[k] = np.concatenate([self.__dict__[k], v])
|
|
|
|
elif isinstance(v, torch.Tensor):
|
|
|
|
self.__dict__[k] = torch.cat([self.__dict__[k], v])
|
|
|
|
elif isinstance(v, list):
|
|
|
|
self.__dict__[k] += v
|
2020-03-13 17:49:22 +08:00
|
|
|
else:
|
2020-05-29 11:56:46 +02:00
|
|
|
s = f'No support for append with type \
|
|
|
|
{type(v)} in class Batch.'
|
2020-03-28 09:43:35 +08:00
|
|
|
raise TypeError(s)
|
2020-03-17 11:37:31 +08:00
|
|
|
|
2020-05-12 11:31:47 +08:00
|
|
|
def __len__(self) -> int:
|
2020-04-04 21:02:06 +08:00
|
|
|
"""Return len(self)."""
|
2020-05-29 11:56:46 +02:00
|
|
|
return min([len(v) for k, v in self.__dict__.items()
|
|
|
|
if k != '_meta' and v is not None])
|
2020-04-03 21:28:12 +08:00
|
|
|
|
2020-05-12 11:31:47 +08:00
|
|
|
def split(self, size: Optional[int] = None,
|
2020-05-16 20:08:32 +08:00
|
|
|
shuffle: bool = True) -> Iterator['Batch']:
|
2020-04-05 18:34:45 +08:00
|
|
|
"""Split whole data into multiple small batch.
|
2020-04-03 21:28:12 +08:00
|
|
|
|
2020-04-06 19:36:59 +08:00
|
|
|
:param int size: if it is ``None``, it does not split the data batch;
|
2020-04-03 21:28:12 +08:00
|
|
|
otherwise it will divide the data batch with the given size.
|
2020-04-06 19:36:59 +08:00
|
|
|
Default to ``None``.
|
2020-04-28 20:56:02 +08:00
|
|
|
:param bool shuffle: randomly shuffle the entire data batch if it is
|
2020-04-06 19:36:59 +08:00
|
|
|
``True``, otherwise remain in the same. Default to ``True``.
|
2020-04-03 21:28:12 +08:00
|
|
|
"""
|
|
|
|
length = len(self)
|
2020-03-17 11:37:31 +08:00
|
|
|
if size is None:
|
|
|
|
size = length
|
2020-04-28 20:56:02 +08:00
|
|
|
if shuffle:
|
2020-05-29 11:56:46 +02:00
|
|
|
indices = np.random.permutation(length)
|
2020-03-20 19:52:29 +08:00
|
|
|
else:
|
2020-05-29 11:56:46 +02:00
|
|
|
indices = np.arange(length)
|
|
|
|
for idx in np.arange(0, length, size):
|
|
|
|
yield self[indices[idx:(idx + size)]]
|