76 Commits

Author SHA1 Message Date
Dominik Jain
dae4000cd2 Revert "Depend on sensAI instead of copying its utils (logging, string)"
This reverts commit fdb0eba93d81fa5e698770b4f7088c87fc1238da.
2023-11-08 19:11:39 +01:00
Dominik Jain
fdb0eba93d Depend on sensAI instead of copying its utils (logging, string) 2023-10-27 20:15:58 +02:00
Dominik Jain
c613557740 Apply datetime_tag() in high-level examples 2023-10-26 12:50:08 +02:00
Dominik Jain
da2194eff6 Force kwargs in PolicyWrapperFactoryIntrinsicCuriosity init 2023-10-26 10:43:59 +02:00
Dominik Jain
b5a891557f Revert to simplified environment factory, removing unnecessary config object
(configuration shall be part of the factory instance)
2023-10-24 13:14:23 +02:00
Dominik Jain
7437131d79 Fix tianshou.highlevel depending on jsonargparse
(should be dev dependency only) by introducing a new
place where jsonargparse can be configured:
logging.run_cli, which is also slightly more convenient
2023-10-19 11:40:49 +02:00
Dominik Jain
6cbee188b8 Change interface of EnvFactory to ensure that configuration
of number of environments in SamplingConfig is used
(values are now passed to factory method)

This is clearer and removes the need to pass otherwise
unnecessary configuration to environment factories at
construction
2023-10-19 11:37:20 +02:00
Dominik Jain
d84e936430 Apply centrally defined callbacks 2023-10-18 20:44:18 +02:00
Dominik Jain
ae4850692f DQNExperimentBuilder: Use IntermediateModuleFactory instead of ActorFactory
(similar to IQN implementation)
2023-10-18 20:44:18 +02:00
Dominik Jain
83048788a1 Add generalised DQN network representation, adding specialised class for feature_only=True 2023-10-18 20:44:18 +02:00
Dominik Jain
4b270eaa2d Add documentation, improve structure of 'module' package 2023-10-18 20:44:18 +02:00
Dominik Jain
76e870207d Improve persistence handling
* Add persistence/restoration of Experiment instance
* Add file logging in experiment
* Allow all persistence/logging to be disabled
* Disable persistence in tests
2023-10-18 20:44:18 +02:00
Dominik Jain
686fd555b0 Extend tests, fixing some default behaviour 2023-10-18 20:44:17 +02:00
Dominik Jain
a8a367c42d Support IQN in high-level API
* Add example atari_iqn_hl
* Factor out trainer callbacks to new module atari_callbacks
* Extract base class for DQN-based agent factories
* Improved module factory interface design, achieving higher generality
2023-10-18 20:44:17 +02:00
Dominik Jain
799beb79b4 Support discrete SAC in high-level API
* Changed machanism for reusing actor's preprocessing module in critics
  to avoid special handling in AgentFactory implementations, improving
  separation of concerns:
    - Added CriticFactoryReuseActor as the new critic factory
    - Added ActorFactoryTransientStorageDecorator to pass on the actor
      data
    - Added helper classes ActorFuture, ActorFutureProviderProtocol
* Add example atari_sac_hl
2023-10-18 20:44:17 +02:00
Dominik Jain
a161a9cf58 Improve type annotations, fix type issues and add checks 2023-10-18 20:44:17 +02:00
Dominik Jain
837ff13c04 Reorder ExperimentBuilder args (EnvFactory first) 2023-10-18 20:44:17 +02:00
Dominik Jain
d269063e6a Remove 'RL' prefix from class names 2023-10-18 20:44:17 +02:00
Dominik Jain
b54fcd12cb Change high-level DQN interface to expect an actor instead of a critic,
because that is what is functionally required
2023-10-18 20:44:16 +02:00
Dominik Jain
1cba589bd4 Add DQN support in high-level API
* Allow to specify trainer callbacks (train_fn, test_fn, stop_fn)
  in high-level API, adding the necessary abstractions and pass-on
  mechanisms
* Add example atari_dqn_hl
2023-10-18 20:44:16 +02:00
Dominik Jain
9f0a410bb1 Log full experiment configuration, adding string representations to relevant classes 2023-10-18 20:44:16 +02:00
Dominik Jain
2671580c6c Add DDPG high-level API and MuJoCo example 2023-10-18 20:44:16 +02:00
Dominik Jain
6b6d9ea609 Add support for discrete PPO
* Refactored module `module` (split into submodules)
* Basic support for discrete environments
* Implement Atari env. factory
* Implement DQN-based actor factory
* Implement notion of reusing agent preprocessing network for critic
* Add example atari_ppo_hl
2023-10-18 20:44:16 +02:00
Michael Panchenko
b900fdf6f2
Remove kwargs in policy init (#950)
Closes #947 

This removes all kwargs from all policy constructors. While doing that,
I also improved several names and added a whole lot of TODOs.

## Functional changes:

1. Added possibility to pass None as `critic2` and `critic2_optim`. In
fact, the default behavior then should cover the absolute majority of
cases
2. Added a function called `clone_optimizer` as a temporary measure to
support passing `critic2_optim=None`

## Breaking changes:

1. `action_space` is no longer optional. In fact, it already was
non-optional, as there was a ValueError in BasePolicy.init. So now
several examples were fixed to reflect that
2. `reward_normalization` removed from DDPG and children. It was never
allowed to pass it as `True` there, an error would have been raised in
`compute_n_step_reward`. Now I removed it from the interface
3. renamed `critic1` and similar to `critic`, in order to have uniform
interfaces. Note that the `critic` in DDPG was optional for the sole
reason that child classes used `critic1`. I removed this optionality
(DDPG can't do anything with `critic=None`)
4. Several renamings of fields (mostly private to public, so backwards
compatible)

## Additional changes: 
1. Removed type and default declaration from docstring. This kind of
duplication is really not necessary
2. Policy constructors are now only called using named arguments, not a
fragile mixture of positional and named as before
5. Minor beautifications in typing and code 
6. Generally shortened docstrings and made them uniform across all
policies (hopefully)

## Comment:

With these changes, several problems in tianshou's inheritance hierarchy
become more apparent. I tried highlighting them for future work.

---------

Co-authored-by: Dominik Jain <d.jain@appliedai.de>
2023-10-08 08:57:03 -07:00
Michael Panchenko
2cc34fb72b
Poetry install, remove gym, bump python (#925)
Closes #914 

Additional changes:

- Deprecate python below 11
- Remove 3rd party and throughput tests. This simplifies install and
test pipeline
- Remove gym compatibility and shimmy
- Format with 3.11 conventions. In particular, add `zip(...,
strict=True/False)` where possible

Since the additional tests and gym were complicating the CI pipeline
(flaky and dist-dependent), it didn't make sense to work on fixing the
current tests in this PR to then just delete them in the next one. So
this PR changes the build and removes these tests at the same time.
2023-09-05 14:34:23 -07:00
Michael Panchenko
600f4bbd55
Python 3.9, black + ruff formatting (#921)
Preparation for #914 and #920

Changes formatting to ruff and black. Remove python 3.8

## Additional Changes

- Removed flake8 dependencies
- Adjusted pre-commit. Now CI and Make use pre-commit, reducing the
duplication of linting calls
- Removed check-docstyle option (ruff is doing that)
- Merged format and lint. In CI the format-lint step fails if any
changes are done, so it fulfills the lint functionality.

---------

Co-authored-by: Jiayi Weng <jiayi@openai.com>
2023-08-25 14:40:56 -07:00
Michael Panchenko
07702fc007
Improved typing and reduced duplication (#912)
# Goals of the PR

The PR introduces **no changes to functionality**, apart from improved
input validation here and there. The main goals are to reduce some
complexity of the code, to improve types and IDE completions, and to
extend documentation and block comments where appropriate. Because of
the change to the trainer interfaces, many files are affected (more
details below), but still the overall changes are "small" in a certain
sense.

## Major Change 1 - BatchProtocol

**TL;DR:** One can now annotate which fields the batch is expected to
have on input params and which fields a returned batch has. Should be
useful for reading the code. getting meaningful IDE support, and
catching bugs with mypy. This annotation strategy will continue to work
if Batch is replaced by TensorDict or by something else.

**In more detail:** Batch itself has no fields and using it for
annotations is of limited informational power. Batches with fields are
not separate classes but instead instances of Batch directly, so there
is no type that could be used for annotation. Fortunately, python
`Protocol` is here for the rescue. With these changes we can now do
things like

```python
class ActionBatchProtocol(BatchProtocol):
    logits: Sequence[Union[tuple, torch.Tensor]]
    dist: torch.distributions.Distribution
    act: torch.Tensor
    state: Optional[torch.Tensor]


class RolloutBatchProtocol(BatchProtocol):
    obs: torch.Tensor
    obs_next: torch.Tensor
    info: Dict[str, Any]
    rew: torch.Tensor
    terminated: torch.Tensor
    truncated: torch.Tensor

class PGPolicy(BasePolicy):
    ...

    def forward(
        self,
        batch: RolloutBatchProtocol,
        state: Optional[Union[dict, Batch, np.ndarray]] = None,
        **kwargs: Any,
    ) -> ActionBatchProtocol:

```

The IDE and mypy are now very helpful in finding errors and in
auto-completion, whereas before the tools couldn't assist in that at
all.

## Major Change 2 - remove duplication in trainer package

**TL;DR:** There was a lot of duplication between `BaseTrainer` and its
subclasses. Even worse, it was almost-duplication. There was also
interface fragmentation through things like `onpolicy_trainer`. Now this
duplication is gone and all downstream code was adjusted.

**In more detail:** Since this change affects a lot of code, I would
like to explain why I thought it to be necessary.

1. The subclasses of `BaseTrainer` just duplicated docstrings and
constructors. What's worse, they changed the order of args there, even
turning some kwargs of BaseTrainer into args. They also had the arg
`learning_type` which was passed as kwarg to the base class and was
unused there. This made things difficult to maintain, and in fact some
errors were already present in the duplicated docstrings.
2. The "functions" a la `onpolicy_trainer`, which just called the
`OnpolicyTrainer.run`, not only introduced interface fragmentation but
also completely obfuscated the docstring and interfaces. They themselves
had no dosctring and the interface was just `*args, **kwargs`, which
makes it impossible to understand what they do and which things can be
passed without reading their implementation, then reading the docstring
of the associated class, etc. Needless to say, mypy and IDEs provide no
support with such functions. Nevertheless, they were used everywhere in
the code-base. I didn't find the sacrifices in clarity and complexity
justified just for the sake of not having to write `.run()` after
instantiating a trainer.
3. The trainers are all very similar to each other. As for my
application I needed a new trainer, I wanted to understand their
structure. The similarity, however, was hard to discover since they were
all in separate modules and there was so much duplication. I kept
staring at the constructors for a while until I figured out that
essentially no changes to the superclass were introduced. Now they are
all in the same module and the similarities/differences between them are
much easier to grasp (in my opinion)
4. Because of (1), I had to manually change and check a lot of code,
which was very tedious and boring. This kind of work won't be necessary
in the future, since now IDEs can be used for changing signatures,
renaming args and kwargs, changing class names and so on.

I have some more reasons, but maybe the above ones are convincing
enough.

## Minor changes: improved input validation and types

I added input validation for things like `state` and `action_scaling`
(which only makes sense for continuous envs). After adding this, some
tests failed to pass this validation. There I added
`action_scaling=isinstance(env.action_space, Box)`, after which tests
were green. I don't know why the tests were green before, since action
scaling doesn't make sense for discrete actions. I guess some aspect was
not tested and didn't crash.

I also added Literal in some places, in particular for
`action_bound_method`. Now it is no longer allowed to pass an empty
string, instead one should pass `None`. Also here there is input
validation with clear error messages.

@Trinkle23897 The functional tests are green. I didn't want to fix the
formatting, since it will change in the next PR that will solve #914
anyway. I also found a whole bunch of code in `docs/_static`, which I
just deleted (shouldn't it be copied from the sources during docs build
instead of committed?). I also haven't adjusted the documentation yet,
which atm still mentions the trainers of the type
`onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()`

## Breaking Changes

The adjustments to the trainer package introduce breaking changes as
duplicated interfaces are deleted. However, it should be very easy for
users to adjust to them

---------

Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 09:54:46 -07:00
Zhenjie Zhao
f8808d236f
fix a problem of the atari dqn example (#861) 2023-04-30 08:44:27 -07:00
Markus Krimmel
6c6c872523
Gymnasium Integration (#789)
Changes:
- Disclaimer in README
- Replaced all occurences of Gym with Gymnasium
- Removed code that is now dead since we no longer need to support the
old step API
- Updated type hints to only allow new step API
- Increased required version of envpool to support Gymnasium
- Increased required version of PettingZoo to support Gymnasium
- Updated `PettingZooEnv` to only use the new step API, removed hack to
also support old API
- I had to add some `# type: ignore` comments, due to new type hinting
in Gymnasium. I'm not that familiar with type hinting but I believe that
the issue is on the Gymnasium side and we are looking into it.
- Had to update `MyTestEnv` to support `options` kwarg
- Skip NNI tests because they still use OpenAI Gym
- Also allow `PettingZooEnv` in vector environment
- Updated doc page about ReplayBuffer to also talk about terminated and
truncated flags.

Still need to do: 
- Update the Jupyter notebooks in docs
- Check the entire code base for more dead code (from compatibility
stuff)
- Check the reset functions of all environments/wrappers in code base to
make sure they use the `options` kwarg
- Someone might want to check test_env_finite.py
- Is it okay to allow `PettingZooEnv` in vector environments? Might need
to update docs?
2023-02-03 11:57:27 -08:00
Markus Krimmel
4c3791a459
Updated atari wrappers, fixed pre-commit (#781)
This PR addresses #772 (updates Atari wrappers to work with new Gym API)
and some additional issues:

- Pre-commit was using gitlab for flake8, which as of recently requires
authentication -> Replaced with GitHub
- Yapf was quietly failing in pre-commit. Changed it such that it fixes
formatting in-place
- There is an incompatibility between flake8 and yapf where yapf puts
binary operators after the line break and flake8 wants it before the
break. I added an exception for flake8.
- Also require `packaging` in setup.py

My changes shouldn't change the behaviour of the wrappers for older
versions, but please double check.
Idk whether it's just me, but there are always some incompatibilities
between yapf and flake8 that need to resolved manually. It might make
sense to try black instead.
2022-12-04 13:00:53 -08:00
Yi Su
662af52820
Fix Atari PPO example (#780)
- [x] I have marked all applicable categories:
    + [ ] exception-raising fix
    + [x] algorithm implementation fix
    + [ ] documentation modification
    + [ ] new feature
- [x] I have reformatted the code using `make format` (**required**)
- [x] I have checked the code using `make commit-checks` (**required**)
- [x] If applicable, I have mentioned the relevant/related issue(s)
- [x] If applicable, I have listed every items in this Pull Request
below

While trying to debug Atari PPO+LSTM, I found significant gap between
our Atari PPO example vs [CleanRL's Atari PPO w/
EnvPool](https://docs.cleanrl.dev/rl-algorithms/ppo/#ppo_atari_envpoolpy).
I tried to align our implementation with CleaRL's version, mostly in
hyper parameter choices, and got significant gain in Breakout, Qbert,
SpaceInvaders while on par in other games. After this fix, I would
suggest updating our [Atari
Benchmark](https://tianshou.readthedocs.io/en/master/tutorials/benchmark.html)
PPO experiments.

A few interesting findings:

- Layer initialization helps stabilize the training and enable the use
of larger learning rates; without it, larger learning rates will trigger
NaN gradient very quickly;
- ppo.py#L97-L101: this change helps training stability for reasons I do
not understand; also it makes the GPU usage higher.

Shoutout to [CleanRL](https://github.com/vwxyzjn/cleanrl) for a
well-tuned Atari PPO reference implementation!
2022-12-04 12:23:18 -08:00
Yifei Cheng
43792bf5ab
Upgrade gym (#613)
fixes some deprecation warnings due to new changes in gym version 0.23:
- use `env.np_random.integers` instead of `env.np_random.randint`
- support `seed` and `return_info` arguments for reset (addresses https://github.com/thu-ml/tianshou/issues/605)
2022-06-28 06:52:21 +08:00
Yi Su
9ce0a554dc
Add Atari SAC examples (#657)
- Add Atari (discrete) SAC examples;
- Fix a bug in Discrete SAC evaluation; default to deterministic mode.
2022-06-04 13:26:08 +08:00
Jiayi Weng
5ecea2402e
Fix save_checkpoint_fn return value (#659)
- Fix save_checkpoint_fn return value to checkpoint_path;
- Fix wrong link in doc;
- Fix an off-by-one bug in trainer iterator.
2022-06-03 01:07:07 +08:00
Jiayi Weng
109875d43d
Fix num_envs=test_num (#653)
* fix num_envs=test_num

* fix mypy
2022-05-30 12:38:47 +08:00
Michal Gregor
c87b9f49bc
Add show_progress option for trainer (#641)
- A DummyTqdm class added to utils: it replicates the interface used by trainers, but does not show the progress bar;
- Added a show_progress argument to the base trainer: when show_progress == True, dummy_tqdm is used in place of tqdm.
2022-05-17 23:41:59 +08:00
Chengqi Duan
5eab7dc218
Add Atari Results (#600) 2022-04-24 20:44:54 +08:00
Alex Nikulkov
92456cdb68
Add learning rate scheduler to BasePolicy (#598) 2022-04-17 23:52:30 +08:00
Jiayi Weng
2a9c9289e5
rename save_fn to save_best_fn to avoid ambiguity (#575)
This PR also introduces `tianshou.utils.deprecation` for a unified deprecation wrapper.
2022-03-22 04:29:27 +08:00
Chengqi Duan
ad2e1eaea0 Fix WandbLogger import error in Atari examples (#562) 2022-03-08 08:38:56 -05:00
Costa Huang
df3d7f582b
Update WandbLogger implementation (#558)
* Use `global_step` as the x-axis for wandb
* Use Tensorboard SummaryWritter as core with `wandb.init(..., sync_tensorboard=True)`
* Update all atari examples with wandb

Co-authored-by: Jiayi Weng <trinkle23897@gmail.com>
2022-03-07 06:40:47 +08:00
Chengqi Duan
23fbc3b712
upgrade gym version to >=0.21, fix related CI and update examples/atari (#534)
Co-authored-by: Jiayi Weng <trinkle23897@gmail.com>
2022-02-25 07:40:33 +08:00
Yi Su
d29188ee77
update atari ppo slots (#529) 2022-02-13 04:04:21 +08:00
Yi Su
40289b8b0e
Add atari ppo example (#523)
I needed a policy gradient baseline myself and it has been requested several times (#497, #374, #440). I used https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/ppo_atari.py as a reference for hyper-parameters.

Note that using lr=2.5e-4 will result in "Invalid Value" error for 2 games. The fix is to reduce the learning rate. That's why I set the default lr to 1e-4. See discussion in https://github.com/DLR-RM/rl-baselines3-zoo/issues/156.
2022-02-11 06:45:06 +08:00
ChenDRAG
c25926dd8f
Formalize variable names (#509)
Co-authored-by: Jiayi Weng <trinkle23897@gmail.com>
2022-01-30 00:53:56 +08:00
Yi Su
a59d96d041
Add Intrinsic Curiosity Module (#503) 2022-01-15 02:43:48 +08:00
Yi Su
3592f45446
Fix critic network for Discrete CRR (#485)
- Fixes an inconsistency in the implementation of Discrete CRR. Now it uses `Critic` class for its critic, following conventions in other actor-critic policies;
- Updates several offline policies to use `ActorCritic` class for its optimizer to eliminate randomness caused by parameter sharing between actor and critic;
- Add `writer.flush()` in TensorboardLogger to ensure real-time result;
- Enable `test_collector=None` in 3 trainers to turn off testing during training;
- Updates the Atari offline results in README.md;
- Moves Atari offline RL examples to `examples/offline`; tests to `test/offline` per review comments.
2021-11-28 23:10:28 +08:00
Jiayi Weng
098d466467
fix atari wrapper to be deterministic (#467) 2021-10-19 22:26:11 +08:00
Ayush Chaurasia
22d7bf38c8
Improve W&B logger (#441)
- rename WandBLogger -> WandbLogger
- add save_data and restore_data
- allow more input arguments for wandb init
- integrate wandb into test/modelbase/test_psrl.py and examples/atari/atari_dqn.py
- documentation update
2021-09-24 21:52:23 +08:00
Jiayi Weng
e8f8cdfa41
fix logger.write error in atari script (#444)
- fix a bug in #427: logger.write should pass a dict
- change SubprocVectorEnv to ShmemVectorEnv in atari
- increase logger interval for eps
2021-09-09 00:51:39 +08:00