* Remove flag `eval_mode` from Collector.collect
* Replace flag `is_eval` in BasePolicy with `is_within_training_step` (negating usages)
and set it appropriately in BaseTrainer
# Changes
## Dependencies
- New extra "eval"
## Api Extension
- `Experiment` and `ExperimentConfig` now have a `name`, that can
however be overridden when `Experiment.run()` is called
- When building an `Experiment` from an `ExperimentConfig`, the user has
the option to add info about seeds to the name.
- New method in `ExperimentConfig` called
`build_default_seeded_experiments`
- `SamplingConfig` has an explicit training seed, `test_seed` is
inferred.
- New `evaluation` package for repeating the same experiment with
multiple seeds and aggregating the results (important extension!).
Currently in alpha state.
- Loggers can now restore the logged data into python by using the new
`restore_logged_data`
## Breaking Changes
- `AtariEnvFactory` (in examples) now receives explicit train and test
seeds
- `EnvFactoryRegistered` now requires an explicit `test_seed`
- `BaseLogger.prepare_dict_for_logging` is now abstract
---------
Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de>
Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
Co-authored-by: Michael Panchenko <35432522+MischaPanch@users.noreply.github.com>
Closes#952
- `SamplingConfig` supports `batch_size=None`. #1077
- tests and examples are covered by `mypy`. #1077
- `NetBase` is more used, stricter typing by making it generic. #1077
- `utils.net.common.Recurrent` now receives and returns a
`RecurrentStateBatch` instead of a dict. #1077
---------
Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
The high-level examples were all broken by changes made to make mypy
pass.
This PR fixes them, making a type change in logging.run_cli instead to
make mypy happy.
* EnvFactory now uses the creation of a single environment as
the basic functionality which the more high-level functions build
upon
* Introduce enum EnvMode to indicate the purpose for which an env
is created, allowing the factory creation process to change its
behaviour accordingly
* Add EnvFactoryGymnasium to provide direct support for envs that
can be created via gymnasium.make
- EnvPool is supported via an injectible EnvPoolFactory
- Existing EnvFactory implementations are now derived from
EnvFactoryGymnasium
* Use a separate environment (which uses new EnvMode.WATCH) for
watching agent performance after training (instead of using test
environments, which the user may want to configure differently)
This PR adds strict typing to the output of `update` and `learn` in all
policies. This will likely be the last large refactoring PR before the
next release (0.6.0, not 1.0.0), so it requires some attention. Several
difficulties were encountered on the path to that goal:
1. The policy hierarchy is actually "broken" in the sense that the keys
of dicts that were output by `learn` did not follow the same enhancement
(inheritance) pattern as the policies. This is a real problem and should
be addressed in the near future. Generally, several aspects of the
policy design and hierarchy might deserve a dedicated discussion.
2. Each policy needs to be generic in the stats return type, because one
might want to extend it at some point and then also extend the stats.
Even within the source code base this pattern is necessary in many
places.
3. The interaction between learn and update is a bit quirky, we
currently handle it by having update modify special field inside
TrainingStats, whereas all other fields are handled by learn.
4. The IQM module is a policy wrapper and required a
TrainingStatsWrapper. The latter relies on a bunch of black magic.
They were addressed by:
1. Live with the broken hierarchy, which is now made visible by bounds
in generics. We use type: ignore where appropriate.
2. Make all policies generic with bounds following the policy
inheritance hierarchy (which is incorrect, see above). We experimented a
bit with nested TrainingStats classes, but that seemed to add more
complexity and be harder to understand. Unfortunately, mypy thinks that
the code below is wrong, wherefore we have to add `type: ignore` to the
return of each `learn`
```python
T = TypeVar("T", bound=int)
def f() -> T:
return 3
```
3. See above
4. Write representative tests for the `TrainingStatsWrapper`. Still, the
black magic might cause nasty surprises down the line (I am not proud of
it)...
Closes#933
---------
Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de>
Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
(should be dev dependency only) by introducing a new
place where jsonargparse can be configured:
logging.run_cli, which is also slightly more convenient
of number of environments in SamplingConfig is used
(values are now passed to factory method)
This is clearer and removes the need to pass otherwise
unnecessary configuration to environment factories at
construction
* Add persistence/restoration of Experiment instance
* Add file logging in experiment
* Allow all persistence/logging to be disabled
* Disable persistence in tests
* Add example atari_iqn_hl
* Factor out trainer callbacks to new module atari_callbacks
* Extract base class for DQN-based agent factories
* Improved module factory interface design, achieving higher generality
* Changed machanism for reusing actor's preprocessing module in critics
to avoid special handling in AgentFactory implementations, improving
separation of concerns:
- Added CriticFactoryReuseActor as the new critic factory
- Added ActorFactoryTransientStorageDecorator to pass on the actor
data
- Added helper classes ActorFuture, ActorFutureProviderProtocol
* Add example atari_sac_hl
* Allow to specify trainer callbacks (train_fn, test_fn, stop_fn)
in high-level API, adding the necessary abstractions and pass-on
mechanisms
* Add example atari_dqn_hl
Closes#947
This removes all kwargs from all policy constructors. While doing that,
I also improved several names and added a whole lot of TODOs.
## Functional changes:
1. Added possibility to pass None as `critic2` and `critic2_optim`. In
fact, the default behavior then should cover the absolute majority of
cases
2. Added a function called `clone_optimizer` as a temporary measure to
support passing `critic2_optim=None`
## Breaking changes:
1. `action_space` is no longer optional. In fact, it already was
non-optional, as there was a ValueError in BasePolicy.init. So now
several examples were fixed to reflect that
2. `reward_normalization` removed from DDPG and children. It was never
allowed to pass it as `True` there, an error would have been raised in
`compute_n_step_reward`. Now I removed it from the interface
3. renamed `critic1` and similar to `critic`, in order to have uniform
interfaces. Note that the `critic` in DDPG was optional for the sole
reason that child classes used `critic1`. I removed this optionality
(DDPG can't do anything with `critic=None`)
4. Several renamings of fields (mostly private to public, so backwards
compatible)
## Additional changes:
1. Removed type and default declaration from docstring. This kind of
duplication is really not necessary
2. Policy constructors are now only called using named arguments, not a
fragile mixture of positional and named as before
5. Minor beautifications in typing and code
6. Generally shortened docstrings and made them uniform across all
policies (hopefully)
## Comment:
With these changes, several problems in tianshou's inheritance hierarchy
become more apparent. I tried highlighting them for future work.
---------
Co-authored-by: Dominik Jain <d.jain@appliedai.de>
Closes#914
Additional changes:
- Deprecate python below 11
- Remove 3rd party and throughput tests. This simplifies install and
test pipeline
- Remove gym compatibility and shimmy
- Format with 3.11 conventions. In particular, add `zip(...,
strict=True/False)` where possible
Since the additional tests and gym were complicating the CI pipeline
(flaky and dist-dependent), it didn't make sense to work on fixing the
current tests in this PR to then just delete them in the next one. So
this PR changes the build and removes these tests at the same time.
Preparation for #914 and #920
Changes formatting to ruff and black. Remove python 3.8
## Additional Changes
- Removed flake8 dependencies
- Adjusted pre-commit. Now CI and Make use pre-commit, reducing the
duplication of linting calls
- Removed check-docstyle option (ruff is doing that)
- Merged format and lint. In CI the format-lint step fails if any
changes are done, so it fulfills the lint functionality.
---------
Co-authored-by: Jiayi Weng <jiayi@openai.com>
# Goals of the PR
The PR introduces **no changes to functionality**, apart from improved
input validation here and there. The main goals are to reduce some
complexity of the code, to improve types and IDE completions, and to
extend documentation and block comments where appropriate. Because of
the change to the trainer interfaces, many files are affected (more
details below), but still the overall changes are "small" in a certain
sense.
## Major Change 1 - BatchProtocol
**TL;DR:** One can now annotate which fields the batch is expected to
have on input params and which fields a returned batch has. Should be
useful for reading the code. getting meaningful IDE support, and
catching bugs with mypy. This annotation strategy will continue to work
if Batch is replaced by TensorDict or by something else.
**In more detail:** Batch itself has no fields and using it for
annotations is of limited informational power. Batches with fields are
not separate classes but instead instances of Batch directly, so there
is no type that could be used for annotation. Fortunately, python
`Protocol` is here for the rescue. With these changes we can now do
things like
```python
class ActionBatchProtocol(BatchProtocol):
logits: Sequence[Union[tuple, torch.Tensor]]
dist: torch.distributions.Distribution
act: torch.Tensor
state: Optional[torch.Tensor]
class RolloutBatchProtocol(BatchProtocol):
obs: torch.Tensor
obs_next: torch.Tensor
info: Dict[str, Any]
rew: torch.Tensor
terminated: torch.Tensor
truncated: torch.Tensor
class PGPolicy(BasePolicy):
...
def forward(
self,
batch: RolloutBatchProtocol,
state: Optional[Union[dict, Batch, np.ndarray]] = None,
**kwargs: Any,
) -> ActionBatchProtocol:
```
The IDE and mypy are now very helpful in finding errors and in
auto-completion, whereas before the tools couldn't assist in that at
all.
## Major Change 2 - remove duplication in trainer package
**TL;DR:** There was a lot of duplication between `BaseTrainer` and its
subclasses. Even worse, it was almost-duplication. There was also
interface fragmentation through things like `onpolicy_trainer`. Now this
duplication is gone and all downstream code was adjusted.
**In more detail:** Since this change affects a lot of code, I would
like to explain why I thought it to be necessary.
1. The subclasses of `BaseTrainer` just duplicated docstrings and
constructors. What's worse, they changed the order of args there, even
turning some kwargs of BaseTrainer into args. They also had the arg
`learning_type` which was passed as kwarg to the base class and was
unused there. This made things difficult to maintain, and in fact some
errors were already present in the duplicated docstrings.
2. The "functions" a la `onpolicy_trainer`, which just called the
`OnpolicyTrainer.run`, not only introduced interface fragmentation but
also completely obfuscated the docstring and interfaces. They themselves
had no dosctring and the interface was just `*args, **kwargs`, which
makes it impossible to understand what they do and which things can be
passed without reading their implementation, then reading the docstring
of the associated class, etc. Needless to say, mypy and IDEs provide no
support with such functions. Nevertheless, they were used everywhere in
the code-base. I didn't find the sacrifices in clarity and complexity
justified just for the sake of not having to write `.run()` after
instantiating a trainer.
3. The trainers are all very similar to each other. As for my
application I needed a new trainer, I wanted to understand their
structure. The similarity, however, was hard to discover since they were
all in separate modules and there was so much duplication. I kept
staring at the constructors for a while until I figured out that
essentially no changes to the superclass were introduced. Now they are
all in the same module and the similarities/differences between them are
much easier to grasp (in my opinion)
4. Because of (1), I had to manually change and check a lot of code,
which was very tedious and boring. This kind of work won't be necessary
in the future, since now IDEs can be used for changing signatures,
renaming args and kwargs, changing class names and so on.
I have some more reasons, but maybe the above ones are convincing
enough.
## Minor changes: improved input validation and types
I added input validation for things like `state` and `action_scaling`
(which only makes sense for continuous envs). After adding this, some
tests failed to pass this validation. There I added
`action_scaling=isinstance(env.action_space, Box)`, after which tests
were green. I don't know why the tests were green before, since action
scaling doesn't make sense for discrete actions. I guess some aspect was
not tested and didn't crash.
I also added Literal in some places, in particular for
`action_bound_method`. Now it is no longer allowed to pass an empty
string, instead one should pass `None`. Also here there is input
validation with clear error messages.
@Trinkle23897 The functional tests are green. I didn't want to fix the
formatting, since it will change in the next PR that will solve #914
anyway. I also found a whole bunch of code in `docs/_static`, which I
just deleted (shouldn't it be copied from the sources during docs build
instead of committed?). I also haven't adjusted the documentation yet,
which atm still mentions the trainers of the type
`onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()`
## Breaking Changes
The adjustments to the trainer package introduce breaking changes as
duplicated interfaces are deleted. However, it should be very easy for
users to adjust to them
---------
Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
Changes:
- Disclaimer in README
- Replaced all occurences of Gym with Gymnasium
- Removed code that is now dead since we no longer need to support the
old step API
- Updated type hints to only allow new step API
- Increased required version of envpool to support Gymnasium
- Increased required version of PettingZoo to support Gymnasium
- Updated `PettingZooEnv` to only use the new step API, removed hack to
also support old API
- I had to add some `# type: ignore` comments, due to new type hinting
in Gymnasium. I'm not that familiar with type hinting but I believe that
the issue is on the Gymnasium side and we are looking into it.
- Had to update `MyTestEnv` to support `options` kwarg
- Skip NNI tests because they still use OpenAI Gym
- Also allow `PettingZooEnv` in vector environment
- Updated doc page about ReplayBuffer to also talk about terminated and
truncated flags.
Still need to do:
- Update the Jupyter notebooks in docs
- Check the entire code base for more dead code (from compatibility
stuff)
- Check the reset functions of all environments/wrappers in code base to
make sure they use the `options` kwarg
- Someone might want to check test_env_finite.py
- Is it okay to allow `PettingZooEnv` in vector environments? Might need
to update docs?
This PR addresses #772 (updates Atari wrappers to work with new Gym API)
and some additional issues:
- Pre-commit was using gitlab for flake8, which as of recently requires
authentication -> Replaced with GitHub
- Yapf was quietly failing in pre-commit. Changed it such that it fixes
formatting in-place
- There is an incompatibility between flake8 and yapf where yapf puts
binary operators after the line break and flake8 wants it before the
break. I added an exception for flake8.
- Also require `packaging` in setup.py
My changes shouldn't change the behaviour of the wrappers for older
versions, but please double check.
Idk whether it's just me, but there are always some incompatibilities
between yapf and flake8 that need to resolved manually. It might make
sense to try black instead.
- [x] I have marked all applicable categories:
+ [ ] exception-raising fix
+ [x] algorithm implementation fix
+ [ ] documentation modification
+ [ ] new feature
- [x] I have reformatted the code using `make format` (**required**)
- [x] I have checked the code using `make commit-checks` (**required**)
- [x] If applicable, I have mentioned the relevant/related issue(s)
- [x] If applicable, I have listed every items in this Pull Request
below
While trying to debug Atari PPO+LSTM, I found significant gap between
our Atari PPO example vs [CleanRL's Atari PPO w/
EnvPool](https://docs.cleanrl.dev/rl-algorithms/ppo/#ppo_atari_envpoolpy).
I tried to align our implementation with CleaRL's version, mostly in
hyper parameter choices, and got significant gain in Breakout, Qbert,
SpaceInvaders while on par in other games. After this fix, I would
suggest updating our [Atari
Benchmark](https://tianshou.readthedocs.io/en/master/tutorials/benchmark.html)
PPO experiments.
A few interesting findings:
- Layer initialization helps stabilize the training and enable the use
of larger learning rates; without it, larger learning rates will trigger
NaN gradient very quickly;
- ppo.py#L97-L101: this change helps training stability for reasons I do
not understand; also it makes the GPU usage higher.
Shoutout to [CleanRL](https://github.com/vwxyzjn/cleanrl) for a
well-tuned Atari PPO reference implementation!